iptables v1.4.7
Usage: iptables -[ACD] chain rule-specification [options]
iptables -I chain [rulenum] rule-specification [options]
iptables -R chain rulenum rule-specification [options]
iptables -D chain rulenum [options]
iptables -[LS] [chain [rulenum]] [options]
iptables -[FZ] [chain] [options]
iptables -[NX] chain
iptables -E old-chain-name new-chain-name
iptables -P chain target [options]
iptables -h (print this help information)
Commands:
Either long or short options are allowed.
--append -A chain Append to chain
--check -C chain Check for the existence of a rule
--delete -D chain Delete matching rule from chain
--delete -D chain rulenum
Delete rule rulenum (1 = first) from chain
--insert -I chain [rulenum]
Insert in chain as rulenum (default 1=first)
--replace -R chain rulenum
Replace rule rulenum (1 = first) in chain
--list -L [chain [rulenum]]
List the rules in a chain or all chains
--list-rules -S [chain [rulenum]]
Print the rules in a chain or all chains
--flush -F [chain] Delete all rules in chain or all chains
--zero -Z [chain [rulenum]]
Zero counters in chain or all chains
--new -N chain Create a new user-defined chain
--delete-chain
-X [chain] Delete a user-defined chain
--policy -P chain target
Change policy on chain to target
--rename-chain
-E old-chain new-chain
Change chain name, (moving any references)
Options:
[!] --proto -p proto protocol: by number or name, eg. `tcp'
[!] --source -s address[/mask][...]
source specification
[!] --destination -d address[/mask][...]
destination specification
[!] --in-interface -i input name[+]
network interface name ([+] for wildcard)
--jump -j target
target for rule (may load target extension)
--goto -g chain
jump to chain with no return
--match -m match
extended match (may load extension)
--numeric -n numeric output of addresses and ports
[!] --out-interface -o output name[+]
network interface name ([+] for wildcard)
--table -t table table to manipulate (default: `filter')
--verbose -v verbose mode
--line-numbers print line numbers when listing
--exact -x expand numbers (display exact values)
[!] --fragment -f match second or further fragments only
--modprobe=
iptables v1.4.7
Usage: iptables -[ACD] chain rule-specification [options]
iptables -I chain [rulenum] rule-specification [options]
iptables -R chain rulenum rule-specification [options]
iptables -D chain rulenum [options]
iptables -[LS] [chain [rulenum]] [options]
iptables -[FZ] [chain] [options]
iptables -[NX] chain
iptables -E old-chain-name new-chain-name
iptables -P chain target [options]
iptables -h (print this help information)
Commands:
Either long or short options are allowed.
--append -A chain Append to chain
--check -C chain Check for the existence of a rule
--delete -D chain Delete matching rule from chain
--delete -D chain rulenum
Delete rule rulenum (1 = first) from chain
--insert -I chain [rulenum]
Insert in chain as rulenum (default 1=first)
--replace -R chain rulenum
Replace rule rulenum (1 = first) in chain
--list -L [chain [rulenum]]
List the rules in a chain or all chains
--list-rules -S [chain [rulenum]]
Print the rules in a chain or all chains
--flush -F [chain] Delete all rules in chain or all chains
--zero -Z [chain [rulenum]]
Zero counters in chain or all chains
--new -N chain Create a new user-defined chain
--delete-chain
-X [chain] Delete a user-defined chain
--policy -P chain target
Change policy on chain to target
--rename-chain
-E old-chain new-chain
Change chain name, (moving any references)
Options:
[!] --proto -p proto protocol: by number or name, eg. `tcp'
[!] --source -s address[/mask][...]
source specification
[!] --destination -d address[/mask][...]
destination specification
[!] --in-interface -i input name[+]
network interface name ([+] for wildcard)
--jump -j target
target for rule (may load target extension)
--goto -g chain
jump to chain with no return
--match -m match
extended match (may load extension)
--numeric -n numeric output of addresses and ports
[!] --out-interface -o output name[+]
network interface name ([+] for wildcard)
--table -t table table to manipulate (default: `filter')
--verbose -v verbose mode
--line-numbers print line numbers when listing
--exact -x expand numbers (display exact values)
[!] --fragment -f match second or further fragments only
--modprobe=
IPTABLES(8) IPTABLES(8)
名前
iptables - IPv4 のパケットフィルタと NAT を管理するツール
書式
iptables [-t table] -[AD] チェイン ルールの詳細 [オプション]
iptables [-t table] -I チェイン [ルール番号] ルールの詳細 [オプション]
iptables [-t table] -R チェイン ルール番号 ルールの詳細 [オプション]
iptables [-t table] -D チェイン ルール番号 [オプション]
iptables [-t table] -[LFZ] [チェイン] [オプション]
iptables [-t table] -N チェイン
iptables [-t table] -X [チェイン]
iptables [-t table] -P チェイン ターゲット [オプション]
iptables [-t table] -E 旧チェイン名 新チェイン名
説明
iptables は Linux カーネルの IP パケットフィルタルールのテーブルを設定
・管理・検査するために使われる。複数の異なるテーブルを定義できる。各 テ
ー ブルにはたくさんの組み込み済みチェインが含まれており、さらにユーザー
定義のチェインを加えることもできる。
各チェインは、パケット群にマッチするルールのリストである。各ルールは マ
ッ チしたパケットに対して何をするかを指定する。これは「ターゲット」と呼
ばれ、同じテーブル内のユーザー定義チェインにジャンプすることもできる。
ターゲット
ひとつのファイアウォールルールでは、パケットを判断する基準とターゲッ ト
と が指定される。パケットがマッチしない場合、チェイン内の次のルールが評
価される。パケットがマッチした場合、ターゲットの値が次のルールを指定 す
る 。 タ ー ゲ ッ ト の値は、ユーザー定義チェインの名前、または特別な値
ACCEPT, DROP, QUEUE, RETURN のうちの 1 つである。
ACCEPT はパケットを通すという意味である。 DROP はパケットを床に落す (捨
てる) という意味である。 QUEUE はパケットをユーザー空間に渡すという意味
である (カーネルがサポートしていればであるが)。 RETURN は、このチェイン
の 検討を中止して、以前の (呼び出し元) チェイン内の次のルールから検討を
再開するという意味である。組み込み済みチェインの最後に到達した場合、 ま
た は組み込み済みチェインでターゲット RETURN を持つルールにマッチした場
合、チェインポリシーで指定されたターゲットがパケットの行方を決定する。
テーブル
現在のところ 3 つの独立なテーブルが存在する (ある時点でどのテーブルが存
在するかは、カーネルの設定やどういったモジュールが存在するかに依存する)
。
-t, --table table
このオプションは、このコマンドを適用するパケットマッチングテーブ
ルを指定する。カーネルに自動モジュールローディングが設定されてい
る場合、そのテーブルに対する適切なモジュールがまだロードされてい
なければ、そのモジュールがロードされる。
テーブルは以下の通りである。
filter:
(-t オプションが渡されなければ) これがデフォルトのテーブルで
ある。これには INPUT (マシン自体に入ってくるパケットに対する
チ ェイン)・ FORWARD (マシンを経由するパケットに対するチェイ
ン)・ OUTPUT (ローカルマシンで生成されたパケットに対するチェ
イン) という組み込み済みチェインが含まれる。
nat:
このテーブルは新しい接続を開くようなパケットに対して参照され
る。これには PREROUTING (パケットが入ってきた場合、すぐに そ
のパケットを変換するためのチェイン)・ OUTPUT (ローカルで生成
されたパケットをルーティングの前に変換するためのチェイン) ・
POSTROUTING (パケットが出て行くときに変換するためのチェイン)
という 3 つの組み込み済みチェインが含まれる。
mangle:
このテーブルは特別なパケット変換に使われる。これには、カーネ
ル 2.4.17 までは PREROUTING (パケットが入ってきた場合、すぐ
にそのパケットを変換するためのチェイン)・ OUTPUT (ローカルで
生 成 されたパケットをルーティングの前に変換するためのチェイ
ン) という 2 つの組み込み済みチェインが含まれる。カ ー ネ ル
2.4.18 からは、これらの他に INPUT (マシン自体に入ってくるパ
ケットに対するチェイン)・ FORWARD (マシンを経由するパケッ ト
に 対するチェイン)・ POSTROUTING (パケットが出て行くときに変
換するためのチェイン) という 3 つの組み込み済みチェインも 含
まれる。
オプション
iptables で使えるオプションは、いくつかのグループに分けられる。
コマンド
こ れらのオプションは、実行する特定の動作を指定する。以下の説明で注記さ
れていない限り、コマンドラインで指定できるのはこの中の 1 つだけである。
長 いバージョンのコマンド名とオプション名は、 iptables が他のコマンド名
やオプション名と区別できる範囲で (文字を省略して) 指定することもでき る
。
-A, --append チェイン ルールの詳細
選 択されたチェインの最後に 1 つ以上のルールを追加する。送信元や
送信先の名前が 1 つ以上のアドレスに解決された場合は、可能なア ド
レスの組合せそれぞれに対してルールが追加される。
-D, --delete チェイン ルールの詳細
-D, --delete チェイン ルール番号
選 択されたチェインから 1 つ以上のルールを削除する。このコマンド
には 2 つの使い方がある: チェインの中の番号 (最初のルールを 1 と
する) を指定する場合と、マッチするルールを指定する場合である。
-I, --insert チェイン [ルール番号] ルールの詳細
選 択されたチェインにルール番号を指定して 1 つ以上のルールを挿入
する。ルール番号が 1 の場合、ルールはチェインの先頭に挿入され る
。これはルール番号が指定されない場合のデフォルトでもある。
-R, --replace チェイン ルール番号 ルールの詳細
選 択 されたチェインでルールを置換する。送信元や送信先の名前が 1
つ以上のアドレスに解決された場合は、このコマンドは失敗する。ルー
ル番号は 1 からはじまる。
-L, --list [チェイン]
選択されたチェインにある全てのルールを一覧表示する。チェインが指
定されない場合、全てのチェインにあるリストが一覧表示される。他の
各 iptables コマンドと同様に、指定されたテーブル (デフォルトは
filter) に対して作用する。よって NAT ルールを表示するには以下 の
ようにする。
iptables -t nat -n -L
DNS の逆引きを避けるために、よく -n オプションと共に使用される。
-Z (ゼロ化) オプションを同時に指定することもできる。この場合、チ
ェインは要素毎にリストされて、 (訳註: パケットカウンタとバイトカ
ウンタが) ゼロにされる。出力表示は同時に与えられた他の引き数に影
響される。
iptables -L -v
を使わない限り (訳注: -v オプションを指定しない限り)、実際のルー
ルそのものは表示されない。
-F, --flush [チェイン]
選択されたチェイン(何も指定しなければテーブル内の全てのチェイン)
の 内容を全消去する。これは全てのルールを 1 個ずつ削除するのと同
じである。
-Z, --zero [チェイン]
すべてのチェインのパケットカウンタとバイトカウンタをゼロにする。
ク リ アされる直前のカウンタを見るために、 -L, --list (一覧表示)
オプションと同時に指定することもできる (上記を参照)。
-N, --new-chain チェイン
指定した名前でユーザー定義チェインを作成する。同じ名前のターゲッ
トが既に存在してはならない。
-X, --delete-chain [チェイン]
指定したユーザー定義チェインを削除する。そのチェインが参照されて
いてはならない。チェインを削除する前に、そのチェインを参照してい
るルールを削除するか置き換えるかしなければならない。引き数が与え
られない場合、テーブルにあるチェインのうち組み込み済みチェインで
ないものを全て削除する。
-P, --policy チェイン ターゲット
チェインのポリシーを、指定したターゲットに設定する。指定可能なタ
ーゲットは「ターゲット」の章を参照すること。 (ユーザー定義ではな
い) 組み込み済みチェインにしかポリシーは設定できない。また、組み
込み済みチェインもユーザー定義チェインもポリシーのターゲットに設
定することはできない。
-E, --rename-chain 旧チェイン名 新チェイン名
ユーザー定義チェインを指定した名前に変更する。これは見た目だけの
変更なので、テーブルの構造には何も影響しない。
-h ヘルプ。 (今のところはとても簡単な) コマンド書式の説明を表示する
。
パラメータ
以下のパラメータは (add, delete, insert, replace, append コマンドで用い
られて) ルールの仕様を決める。
[!] -p, --protocol protocol
ルールで使われるプロトコル、またはチェックされるパケットのプロト
コ ル。指定できるプロトコルは、 tcp, udp, icmp, all のいずれか 1
つか、数値である。数値には、これらのプロトコルのどれかないし別の
プロトコルを表す数値を指定することができる。 /etc/protocols にあ
るプロトコル名も指定できる。プロトコルの前に "!" を置くと、そ の
プロトコルを除外するという意味になる。数値 0 は all と等しい。プ
ロトコル all は全てのプロトコルとマッチし、このオプションが省 略
された際のデフォルトである。
[!] -s, --source address[/mask]
送 信元の指定。 address はホスト名 (DNS のようなリモートへの問い
合わせで解決する名前を指定するのは非常に良くない) ・ネットワーク
IP アドレス (/mask を指定する)・通常の IP アドレス、のいずれかで
ある。 mask はネットワークマスクか、ネットワークマスクの左側にあ
る 1 の 数 を 指 定する数値である。つまり、 24 という mask は
255.255.255.0 に等しい。アドレス指定の前に "!" を置くと、その ア
ド レスを除外するという意味になる。フラグ --src は、このオプショ
ンの別名である。
[!] -d, --destination address[/mask]
送信先の指定。書式の詳しい説明については、 -s (送信元) フラグ の
説 明を参照すること。フラグ --dst は、このオプションの別名である
。
-j, --jump target
ルールのターゲット、つまり、パケットがマッチした場合にどうするか
を指定する。ターゲットはユーザー定義チェイン (そのルール自身が入
っているチェイン以外) でも、パケットの行方を即時に決定する特別な
組 み込み済みターゲットでも、拡張されたターゲット (以下の 「ター
ゲットの拡張」を参照) でもよい。このオプションがルールに指定され
なかった場合は、ルールにマッチしてもパケットの行方に何も影響しな
いが、ルールのカウンタは 1 つ加算される。
[!] -i, --in-interface name
パケットを受信することになるインターフェース名 (INPUT, FORWARD,
PREROUTING チェインに入るパケットのみ)。インターフェース名の前に
"!" を置くと、そのインターフェースを除外するという意味になる。イ
ン ターフェース名が "+" で終っている場合、その名前で始まる任意の
インターフェース名にマッチする。このオプションが省略された場合、
任意のインターフェース名にマッチする。
[!] -o, --out-interface name
パケットを送信することになるインターフェース名 (FORWARD, OUTPUT,
POSTROUTING チェインに入るパケットのみ)。インターフェース名の 前
に "!" を置くと、そのインターフェースを除外するという意味になる
。インターフェース名が "+" で終っている場合、その名前で始まる 任
意のインターフェース名にマッチする。このオプションが省略された場
合、任意のインターフェース名にマッチする。
[!] -f, --fragment
このオプションは、分割されたパケット (fragmented packet) のう ち
2 番目以降のパケットだけを参照するルールであることを意味する。こ
のようなパケット (または ICMP タイプのパケット) は送信元・送信先
ポートを知る方法がないので、送信元や送信先を指定するようなルール
にはマッチしない。 "-f" フラグの前に "!" を置くと、分割された パ
ケットのうち最初のものか、分割されていないパケットだけにマッチす
る。
-c, --set-counters PKTS BYTES
このオプションを使うと、 (insert, append, replace 操作におい て)
管理者はパケットカウンタとバイトカウンタを初期化することができる
。
その他のオプション
その他に以下のオプションを指定することができる:
-v, --verbose
詳細な出力を行う。 list コマンドの際に、インターフェース名・ (も
しあれば) ルールのオプション・TOS マスクを表示させる。パケットと
バイトカウンタも表示される。添字 ’K’, ’M’, ’G’ は 、 そ れ ぞ れ
1000, 1,000,000, 1,000,000,000 倍を表す (これを変更する -x フラ
グも見よ)。このオプションを append, insert, delete, replace コマ
ンドに適用すると、ルールについての詳細な情報を表示する。
-n, --numeric
数値による出力を行う。 IP アドレスやポート番号を数値によるフォー
マットで表示する。デフォルトでは、iptables は (可能であれば) こ
れらの情報をホスト名・ネットワーク名・サービス名で表示しようとす
る。
-x, --exact
厳密な数値で表示する。パケットカウンタとバイトカウン タ を 、 K
(1000 の何倍か)・M (1000K の何倍か)・G (1000M の何倍か) ではなく
、厳密な値で表示する。このオプションは、 -L コマンドとしか関係し
ない。
--line-numbers
ルールを一覧表示する際、そのルールがチェインのどの位置にあるかを
表す行番号を各行の始めに付加する。
--modprobe=command
チェインにルールを追加または挿入する際に、 (ターゲットやマッチン
グ の 拡張などで) 必要なモジュールをロードするために使う command
を指定する。
マッチングの拡張
iptables は拡張されたパケットマッチングモジュールを使うことができる。こ
れらのモジュールは 2 種類の方法でロードされる: モジュールは、 -p または
--protocol で暗黙のうちに指定されるか、 -m または --match の後にモジ ュ
ー ル名を続けて指定される。これらのモジュールの後ろには、モジュールに応
じて他のいろいろなコマンドラインオプションを指定することができる。複 数
の 拡張マッチングモジュールを一行で指定することができる。また、モジュー
ルに特有のヘルプを表示させるためには、モジュールを指定した後で -h ま た
は --help を指定すればよい。
以 下の拡張がベースパッケージに含まれている。大部分のものは、 ! を前に
おくことによってマッチングの意味を逆にできる。
ah
このモジュールは IPSec パケットの AH ヘッダーの SPI 値にマッチする。
[!] --ahspi spi[:spi]
conntrack
このモジュールは、接続追跡 (connection tracking) と組み合わせて用いると
、 "state" マッチよりもさらに多くの、パケットについての接続追跡状態を知
ることができる (この機能をサポートしたカーネルのもとで iptables がコ ン
パイルされた場合にのみ、このモジュールは存在する)。
--ctstate state
state は、マッチング対象となる、コンマ区切りの接続状態リストであ
る。指定可能な state は以下の通り。 INVALID: メモリを使い果た し
た為や、既知の接続とは対応しない ICMP エラーなど、何らかの理由に
よりパケットが識別できない。 ESTABLISHED: このパケットは、過去双
方 向にパケットがやり取りされた接続に属するパケットである。 NEW:
このパケットが新しい接続を開始したか、双方向にはパケットがやり取
りされていない接続に属するパケットである。 RELATED: このパケット
が新しい接続を開始しているが、 FTP データ転送や ICMP エラーの よ
う に、既存の接続に関係している。 SNAT: 仮想的な状態であり、書き
換え前の送信元アドレスが応答の宛先アドレスと異なる場合にマッチす
る 。 DNAT: 仮想的な状態であり、書き換え前の宛先アドレスが応答の
送信元アドレスと異なる場合にマッチする。
--ctproto proto
(名前または数値で) 指定されたプロトコルにマッチする。
[!] --ctorigsrc address[/mask]
書き換え前の送信元アドレスにマッチする。
[!] --ctorigdst address[/mask]
書き換え前の宛先アドレスにマッチする。
[!] --ctreplsrc address[/mask]
応答の送信元アドレスにマッチする。
[!] --ctrepldst address[/mask]
応答の宛先アドレスにマッチする。
--ctstatus [NONE|EXPECTED|SEEN_REPLY|ASSURED][,...]
接続追跡の内部的な状態にマッチする。
--ctexpire time[:time]
有効期間の残り秒数、またはその範囲(両端を含む)にマッチする。
dscp
このモジュールは、IP ヘッダーの TOS フィールド内にある、 6 bit の DSCP
フィールドにマッチする。 IETF では DSCP が TOS に取って代わった。
--dscp value
(10 進または 16 進の) 数値 [0-63] にマッチする。
--dscp-class DiffServ Class
DiffServ クラスにマッチする。値は BE, EF, AFxx, CSx クラスのいず
れかである。これらは、対応する数値で指定するのと同じである。
esp
このモジュールは IPSec パケットの ESP ヘッダーの SPI 値にマッチする。
[!] --espspi spi[:spi]
helper
このモジュールは、指定された接続追跡ヘルパーモジュールに関連するパケ ッ
トにマッチする。
--helper string
指定された接続追跡ヘルパーモジュールに関連するパケットにマッチす
る。
デフォルトのポートを使った ftp-セッションに関連するパケットで は
、 string に "ftp" と書ける。他のポートでは "-ポート番号" を値に
付け加える。すなわち "ftp-2121" となる。
他の接続追跡ヘルパーでも同じルールが適用される。
icmp
この拡張は ‘--protocol icmp’ が指定された場合にロードされ、以下のオプシ
ョンが提供される:
[!] --icmp-type typename
数値の ICMP タイプ、またはコマンド
iptables -p icmp -h
で表示される ICMP タイプ名を指定できる。
length
このモジュールは、指定されたパケット長、またはその範囲にマッチする。
--length length[:length]
limit
こ のモジュールは、トークンバケツフィルタを使い、単位時間あたり制限され
た回数だけマッチする。この拡張を使ったルールは、(‘!’ フラグが指定されな
い 限り) 制限に達するまでマッチする。このモジュールは例えば、ログ記録を
制限するために LOG ターゲットと組み合わせて使うことができる。
--limit rate
単位時間あたりの平均マッチ回数の最大値。数値で指定さ れ 、 添 字
‘/second’, ‘/minute’, ‘/hour’, ‘/day’ を付けることもできる。デフ
ォルトは 3/hour である。
--limit-burst number
パケットがマッチする回数の最大初期値: マッチ回数の最大値は、上の
オプションで指定した制限に達しなければ、その度ごとに、この数値に
なるまで 1 個ずつ増やされる。デフォルトは 5 である。
mac
[!] --mac-source address
送信元 MAC アドレスにマッチする。 address は XX:XX:XX:XX:XX:XX
という形式でなければならない。イーサーネットデバイスから入ってく
るパケットで、 PREROUTING, FORWARD, INPUT チェインに入るパケット
にしか意味がない。
mark
このモジュールはパケットに関連づけられた netfilter の mark フィールドに
マッチする (このフィールドは、以下の MARK ターゲットで設定される)。
--mark value[/mask]
指定された符号なし mark 値のパケットにマッチする (mask が指定 さ
れると、比較の前に mask との論理積 (AND) がとられる)。
multiport
こ の モジュールは送信元や送信先のポートの集合にマッチする。ポートは 15
個まで指定できる。このモジュールは -p tcp または -p udp と組み合わせ て
使うことしかできない。
--source-ports port[,port[,port...]]
送信元ポートが指定されたポートのうちのいずれかであればマッチする
。フラグ --sports は、このオプションの便利な別名である。
--destination-ports port[,port[,port...]]
宛先ポートが指定されたポートのうちのいずれかであればマッチする。
フラグ --dports は、このオプションの便利な別名である。
--ports port[,port[,port...]]
送信元ポートと宛先ポートが等しく、かつそのポートが指定されたポー
トのうちのいずれかであればマッチする。
owner
このモジュールは、ローカルで生成されたパケットに付いて、パケット生成 者
の いろいろな特性に対してマッチを行う。これは OUTPUT チェインのみでしか
有効でない。また、(ICMP ping 応答のような) パケットは、所有者がいないの
で絶対にマッチしない。
--uid-owner userid
指定された実効ユーザー ID のプロセスによりパケットが生成されてい
る場合にマッチする。
--gid-owner groupid
指定された実効グループ ID のプロセスによりパケットが生成されてい
る場合にマッチする。
--pid-owner processid
指定されたプロセス ID のプロセスによりパケットが生成されている場
合にマッチする。
--sid-owner sessionid
指定されたセッショングループのプロセスによりパケットが生成されて
いる場合にマッチする。
--cmd-owner name
指定されたコマンド名を持つプロセスによりパケットが生成されている
場合にマッチする (この機能をサポートしたカーネルのもと で ipta-
bles がコンパイルされた場合にのみ、このモジュールは存在する)。
physdev
こ のモジュールは、ブリッジデバイスのスレーブにされた、ブリッジポートの
入出力デバイスにマッチする。このモジュールは、ブリッジによる透過的な IP
フ ァイアウォールの基盤の一部であり、カーネルバージョン 2.5.44 以降での
み有効である。
--physdev-in name
パケットが受信されるブリッジのポート名 (INPUT, FORWARD, PREROUT-
ING チェインに入るパケットのみ)。インターフェース名が "+" で終っ
ている場合、その名前で始まる任意のインターフェース名にマッチする
。 ブリッジデバイスを通して受け取られなかったパケットは、 ’!’ が
指定されていない限り、このオプションにマッチしない。
--physdev-out name
パケットを送信することになるブリッジのポート名 (FORWARD, OUTPUT,
POSTROUTING チ ェインに入るパケットのみ)。インターフェース名が
"+" で終っている場合、その名前で始まる任意のインターフェース名に
マ ッチする。 nat と mangle テーブルの OUTPUT チェインではブリッ
ジの出力ポートにマッチさせることができないが、 filter テーブルの
OUPUT チェインではマッチ可能である。パケットがブリッジデバイスか
ら送られなかった場合、またはパケットの出力デバイスが不明であった
場 合は、 ’!’ が指定されていない限り、パケットはこのオプションに
マッチしない。
--physdev-is-in
パケットがブリッジインターフェースに入った場合にマッチする。
--physdev-is-out
パケットがブリッジインターフェースから出ようとした場合にマッチす
る。
--physdev-is-bridged
パケットがブリッジされることにより、ルーティングされなかった場合
にマッチする。これは FORWARD, POSTROUTING チェインにおいてのみ役
立つ。
pkttype
このモジュールは、リンク層のパケットタイプにマッチする。
--pkt-type [unicast|broadcast|multicast]
state
このモジュールは、接続追跡 (connection tracking) と組み合わせて用いると
、パケットについての接続追跡状態を知ることができる。
--state state
state は、マッチングを行うための、コンマで区切られた接続状態のリ
ス トである。指定可能な state は以下の通り。 INVALID: このパケッ
トは既知の接続と関係していない。 ESTABLISHED: このパケットは、過
去 双 方向にパケットがやり取りされた接続に属するパケットである。
NEW: このパケットが新しい接続を開始したか、双方向にはパケット が
やり取りされていない接続に属するパケットである。 RELATED: このパ
ケットが新しい接続を開始しているが、 FTP データ転送や ICMP エ ラ
ーのように、既存の接続に関係している。
tcp
こ れらの拡張は ‘--protocol tcp’ が指定され場合にロードされ、以下のオプ
ションが提供される:
[!] --source-port port[:port]
送信元ポートまたはポート範囲の指定。サービス名またはポート番号を
指 定できる。 port:port という形式で、2 つの番号を含む範囲を指定
することもできる。最初のポートを省略した場合、"0" を仮定する。最
後のポートを省略した場合、"65535" を仮定する。最初のポートが最後
のポートより大きい場合、2 つは入れ換えられる。フラグ --sport は
、このオプションの便利な別名である。
[!] --destination-port port[:port]
送 信先ポートまたはポート範囲の指定。フラグ --dport は、このオプ
ションの便利な別名である。
[!] --tcp-flags mask comp
TCP フラグが指定されたものと等しい場合にマッチする。第 1 引き 数
は 評価対象とするフラグで、コンマ区切りのリストである。第 2 引き
数はこのうち設定されていなければならないフラグで、コンマ区切りの
リ ス ト で ある。指定できるフラグは SYN ACK FIN RST URG PSH ALL
NONE である。よって、コマンド
iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN
は、SYN フラグが設定され ACK, FIN, RST フラグが設定されていな い
パケットにのみマッチする。
[!] --syn
SYN ビットが設定され ACK と RST ビットがクリアされている TCP パ
ケットにのみマッチする。このようなパケットは TCP 接続の開始要 求
に使われる。例えば、あるインターフェースに入ってくるこのようなパ
ケットをブロックすれば、内側への TCP 接続は禁止されるが、外側 へ
の TCP 接続には影響しない。これは --tcp-flags SYN,RST,ACK SYN と
等しい。 "--syn" の前に "!" フラグを置くと、 SYN ビットがクリ ア
さ れ ACK と RST ビットが設定されている TCP パケットにのみマッチ
する。
[!] --tcp-option number
TCP オプションが設定されている場合にマッチする。
--mss value[:value]
指定された MSS 値 (の範囲) を持つ TCP の SYN または SYN/ACK パケ
ッ トにマッチする。 MSS は接続に対するパケットの最大サイズを制御
する。
tos
このモジュールは IP ヘッダーの 8 ビットの (つまり上位ビットを含む) Type
of Service フィールドにマッチする。
--tos tos
引き数は、マッチを行う標準的な名前でも数値でもよい (名前のリスト
を見るには
iptables -m tos -h
を使うこと)。
ttl
このモジュールは IP ヘッダーの time to live フィールドにマッチする。
--ttl ttl
指定された TTL 値にマッチする。
udp
これらの拡張は ‘--protocol udp’ が指定された場合にロードされ、以下の オ
プションが提供される:
[!] --source-port port[:port]
送 信元ポートまたはポート範囲の指定。詳細は TCP 拡張の --source-
port オプションの説明を参照すること。
[!] --destination-port port[:port]
送信先ポートまたはポート範囲の指定。詳細は TCP 拡張の --destina-
tion-port オプションの説明を参照すること。
unclean
こ のモジュールにはオプションがないが、おかしく正常でないように見えるパ
ケットにマッチする。これは実験的なものとして扱われている。
ターゲットの拡張
iptables は拡張ターゲットモジュールを使うことができる: 以下のものが、標
準的なディストリビューションに含まれている。
DNAT
このターゲットは nat テーブルの PREROUTING, OUTPUT チェイン、これらのチ
ェインから呼び出されるユーザー定義チェインのみで有効である。このター ゲ
ッ トはパケットの送信先アドレスを修正する (この接続の以降のパケットも修
正して分からなく (mangle) する)。さらに、ルールによるチェックを止めさせ
る。このターゲットにはオプションが 1 種類ある:
--to-destination ipaddr[-ipaddr][:port-port]
1 つの新しい送信先 IP アドレス、または IP アドレスの範囲が指定で
きる。ポートの範囲を指定することもできる (これはルールで -p tcp
ま たは -p udp を指定している場合にのみ有効)。ポートの範囲が指定
されていない場合、送信先ポートは変更されない。
複数の --to-destination オプションを指定することができる。アドレ
スの範囲によって、もしくは複数の --to-destination オプションによ
って 2 つ以上の送信先アドレスを指定した場合、それらのアドレス を
使った単純なラウンド・ロビン (順々に循環させる) がおこなわれる。
DSCP
このターゲットは、IPv4 パケットの TOS ヘッダーにある DSCP ビットの値 の
書き換えを可能にする。これはパケットを操作するので、mangle テーブルでの
み使用できる。
--set-dscp value
DSCP フィールドの数値を設定する (10 進または 16 進)。
--set-dscp-class class
DSCP フィールドの DiffServ クラスを設定する。
ECN
このターゲットは ECN ブラックホール問題への対処を可能にする。 mangle テ
ーブルでのみ使用できる。
--ecn-tcp-remove
TCP ヘッダーから全ての ECN ビット (訳注: ECE/CWR フラグ) を取り
除く。当然、 -p tcp オプションとの組合わせでのみ使用できる。
LOG
マッチしたパケットをカーネルログに記録する。このオプションがルールに 対
して設定されると、 Linux カーネルはマッチしたパケットについての (大部分
の IP ヘッダーフィールドのような) 何らかの情報をカーネルログに表示す る
(カーネルログは dmesg または syslogd(8) で見ることができる)。これは "非
終了ターゲット" である。すなわち、ルールの検討は、次のルールへと継続 さ
れ る。よって、拒否するパケットをログ記録したければ、同じマッチング判断
基準を持つ 2 つのルールを使用し、最初のルールで LOG ターゲットを、次 の
ルールで DROP (または REJECT) ターゲットを指定する。
--log-level level
ロ グ 記録のレベル (数値て指定するか、 (訳註: 名前で指定する場合
は) syslog.conf(5) を参照すること)。
--log-prefix prefix
指定したプレフィックスをログメッセージの前に付ける。プレフィック
スは 29 文字までの長さで、ログの中でメッセージを区別するのに役立
つ。
--log-tcp-sequence
TCP シーケンス番号をログに記録する。ログがユーザーから読める場合
、セキュリティ上の危険がある。
--log-tcp-options
TCP パケットヘッダーのオプションをログに記録する。
--log-ip-options
IP パケットヘッダーのオプションをログに記録する。
MARK
パケットに関連づけられた netfilter の mark 値を設定する。 mangle テーブ
ルのみで有効である。例えば、iproute2 と組み合わせて使うことができる。
--set-mark value[/mask]
MASQUERADE
このターゲットは nat テーブルの POSTROUTING チェインのみで有効である 。
動 的 割り当て IP (ダイヤルアップ) 接続の場合にのみ使うべきである。固定
IP アドレスならば、SNAT ターゲットを使うべきである。マスカレーディン グ
は 、パケットが送信されるインターフェースの IP アドレスへのマッピングを
指定するのと同じであるが、インターフェースが停止した場合に接続を忘れ る
と いう効果がある。次のダイヤルアップでは同じインターフェースアドレスに
なる可能性が低い (そのため、前回確立された接続は失われる) 場合、この 動
作は正しい。このターゲットにはオプションが 1 つある。
--to-ports port[-port]
このオプションは、使用する送信元ポートの範囲を指定し、デフォルト
の SNAT 送信元ポートの選択方法 (上記) よりも優先される。ルールが
-p tcp または -p udp を指定している場合にのみ有効である。
MIRROR
実 験的なデモンストレーション用のターゲットであり、 IP ヘッダーの送信元
と送信先フィールドを入れ換え、パケットを再送信するものである。 こ れ は
INPUT, FORWARD, PREROUTING チェインと、これらのチェインから呼び出される
ユーザー定義チェインだけで有効である。ループ等の問題を回避するため、 外
部 に送られるパケットはいかなるパケットフィルタリングチェイン・接続追跡
・NAT からも監視されない。
REDIRECT
このターゲットは、 nat テーブル内の PREROUTING チェイン及び OUTPUT チェ
イ ン、そしてこれらチェインから呼び出されるユーザー定義チェインでのみ有
効である。このターゲットはパケットの送信先 IP アドレスをマシン自身の IP
ア ド レ ス に 変 換 す る 。 (ローカルで生成されたパケットは、アドレス
127.0.0.1 にマップされる)。このターゲットにはオプションが 1 つある:
--to-ports port[-port]
このオプションは使用される送信先ポート・ポート範囲・複数ポートを
指定する。このオプションが指定されない場合、送信先ポートは変更さ
れない。ルールが -p tcp または -p udp を指定している場合にのみ有
効である。
REJECT
マ ッチしたパケットの応答としてエラーパケットを送信するために使われる。
エラーパケットを送らなければ、 DROP と同じであり、TARGET を終了し、ルー
ル の検討を終了する。このターゲットは、 INPUT, FORWARD, OUTPUT チェイン
と、これらのチェインから呼ばれるユーザー定義チェインだけで有効である 。
以下のオプションは、返されるエラーパケットの特性を制御する。
--reject-with type
type として指定可能なものは
icmp-net-unreachable
icmp-host-unreachable
icmp-port-unreachable
icmp-proto-unreachable
icmp-net-prohibited
icmp-host-prohibited or
icmp-admin-prohibited (*)
で あり、適切な ICMP エラーメッセージを返す (port-unreachable が
デフォルトである)。 TCP プロトコルにのみマッチするルールに対して
、 オプション tcp-reset を使うことができる。このオプションを使う
と、TCP RST パケットが送り返される。主として ident (113/tcp) に
よ る探査を阻止するのに役立つ。 ident による探査は、壊れている (
メールを受け取らない) メールホストにメールが送られる場合に頻繁に
起こる。
(*) icmp-admin-prohibited を サポートしないカーネルで、 icmp-
admin-prohibited を使用すると、 REJECT ではなく単なる DROP に な
る。
SNAT
こ のターゲットは nat テーブルの POSTROUTING チェインのみで有効である。
このターゲットはパケットの送信元アドレスを修正させる (この接続の以降 の
パケットも修正して分からなく (mangle) する)。さらに、ルールが評価を中止
するように指示する。このターゲットにはオプションが 1 種類ある:
--to-source ipaddr[-ipaddr][:port-port]
1 つの新しい送信元 IP アドレス、または IP アドレスの範囲が指定で
きる。ポートの範囲を指定することもできる (ルールが -p tcp または
-p udp を指定している場合にのみ有効)。ポートの範囲が指定されてい
ない場合、 512 未満の送信元ポートは、他の 512 未満のポートにマッ
ピングされる。 512 〜 1023 までのポートは、1024 未満のポートにマ
ッ ピングされる。それ以外のポートは、1024 以上のポートにマッピン
グされる。可能であれば、ポートの変換は起こらない。
複数の --to-source オプションを指定することができる。アドレス の
範囲によって、もしくは複数の --to-source オプションによって 2 つ
以上の送信元アドレスを指定した場合、それらのアドレスを使った単純
なラウンド・ロビン (順々に循環させる) がおこなわれる。
TCPMSS
こ のターゲットを用いると、TCP の SYN パケットの MSS 値を書き換え、その
コネクションの最大サイズ (通常は、送信インターフェースの MTU から 40 引
いた値) を制御できる。もちろん -p tcp と組み合わせてしか使えない。
こ の ターゲットは犯罪的に頭のいかれた ISP や ICMP Fragmentation Needed
パケットをブロックしてしまうサーバーを乗り越えるために使用する。 Linux
ファイアウォール/ルーターでは何も問題がないのに、そこにぶら下がるマシン
では以下のように大きなパケットをやりとりできないというのが、この問題 の
兆候である。
1) ウェブ・ブラウザで接続が、何のデータも受け取らずにハングする
2) 短いメールは問題ないが、長いメールがハングする
3) ssh は問題ないが、scp は最初のハンドシェーク後にハングする
回 避方法: このオプションを有効にし、以下のようなルールをファイアウォー
ルの設定に追加する。
iptables -A FORWARD -p tcp --tcp-flags SYN,RST SYN \
-j TCPMSS --clamp-mss-to-pmtu
--set-mss value
MSS オプションの値を指定した値に設定する。
--clamp-mss-to-pmtu
自動的に、MSS 値を (path_MTU - 40) に強制する。
これらのオプションはどちらか 1 つしか指定できない。
TOS
IP ヘッダーの 8 ビットの Type of Service フィールドを設定するために使わ
れる。 mangle テーブルのみで有効である。
--set-tos tos
TOS を番号で指定することができる。また、
iptables -j TOS -h
を実行して得られる、使用可能な TOS 名の一覧にある TOS 名も指定で
きる。
ULOG
このターゲットは、マッチしたパケットをユーザー空間でログ記録する機能 を
提供する。このターゲットがルールに設定されると、 Linux カーネルは、その
パケットを netlink ソケットを用いてマルチキャストする。そして、1 つ以上
の ユーザー空間プロセスがいろいろなマルチキャストグループに登録をおこな
い、パケットを受信する。 LOG と同様、これは "非終了ターゲット" であり、
ルールの検討は次のルールへと継続される。
--ulog-nlgroup nlgroup
パ ケットを送信する netlink グループ (1-32) を指定する。デフォル
トの値は 1 である。
--ulog-prefix prefix
指定したプレフィックスをログメッセージの前に付ける。 32 文字まで
の指定できる。ログの中でメッセージを区別するのに便利である。
--ulog-cprange size
ユ ーザー空間にコピーするパケットのバイト数。値が 0 の場合、サイ
ズに関係なく全パケットをコピーする。デフォルトは 0 である。
--ulog-qthreshold size
カーネル内部のキューに入れられるパケットの数。例えば、この 値 を
10 にした場合、カーネル内部で 10 個のパケットをまとめ、 1 つの
netlink マルチパートメッセージとしてユーザー空間に送る。 (過去の
ものとの互換性のため) デフォルトは 1 である。
返り値
い ろいろなエラーメッセージが標準エラーに表示される。正しく機能した場合
、終了コードは 0 である。不正なコマンドラインパラメータによりエラーが発
生した場合は、終了コード 2 が返される。その他のエラーの場合は、終了コー
ド 1 が返される。
バグ
バグ? バグって何? ;-) えーと…、sparc64 ではカウンター値が信頼できな い
。
IPCHAINS との互換性
iptables は、Rusty Russell の ipchains と非常によく似ている。大きな違い
は、チェイン INPUT と OUTPUT が、それぞれローカルホストに入ってくるパケ
ッ トと、ローカルホストから出されるパケットのみしか調べないという点であ
る。よって、(INPUT と OUTPUT の両方のチェインを起動するループバックトラ
フ ィックを除く) 全てのパケットは 3 つあるチェインのうち 1 しか通らない
。以前は (ipchains では)、フォワードされるパケットは 3 つのチェイン全て
を通っていた。
そ の他の大きな違いは、 -i で入力インターフェース、 -o で出力インターフ
ェースを参照すること、そしてともに FORWARD チェインに入るパケットに対し
て指定可能な点である。
NAT のいろいろな形式が分割された。オプションの拡張モジュールとともにデ
フォルトの「フィルタ」テーブルを用いた場合、 iptables は純粋なパケッ ト
フ ィルタとなる。これは、以前みられた IP マスカレーディングとパケットフ
ィルタリングの組合せによる混乱を簡略化する。よって、オプション
-j MASQ
-M -S
-M -L
は別のものとして扱われる。 iptables では、その他にもいくつかの変更が あ
る。
関連項目
iptables-save(8), iptables-restore(8), ip6tables(8), ip6tables-save(8),
ip6tables-restore(8).
パケットフィルタリングについての詳細な iptables の使用法を説明してい る
packet-filtering-HOWTO。 NAT について詳細に説明している NAT-HOWTO。標準
的 な 配 布 に は 含 ま れ な い 拡 張 の 詳 細 を 説 明 し て い る
netfilter-extensions-HOWTO 。 内 部 構 造 に つ い て詳細に説明している
netfilter-hacking-HOWTO。
http://www.netfilter.org/ を参照のこと。
著者
Rusty Russell は、初期の段階で Michael Neuling に相談して iptables を書
いた。
Marc Boucher は Rusty に iptables の一般的なパケット選択の考え方を勧め
て、 ipnatctl を止めさせた。そして、mangle テーブル・所有者マッチング・
mark 機能を書き、いたるところで使われている素晴らしいコードを書いた。
James Morris が TOS ターゲットと tos マッチングを書いた。
Jozsef Kadlecsik が REJECT ターゲットを書いた。
Harald Welte が ULOG ターゲットと、 TTL, DSCP, ECN のマッチ・ターゲット
を書いた。
Netfilter コアチームは、Marc Boucher, Martin Josefsson, Jozsef Kadlec-
sik, James Morris, Harald Welte, Rusty Russell である。
man ページは Herve Eychenne
IPTABLES(8) iptables 1.4.7 IPTABLES(8)
NAME
iptables — administration tool for IPv4 packet filtering and NAT
SYNOPSIS
iptables [-t table] {-A|-C|-D} chain rule-specification
iptables [-t table] -I chain [rulenum] rule-specification
iptables [-t table] -R chain rulenum rule-specification
iptables [-t table] -D chain rulenum
iptables [-t table] -S [chain [rulenum]]
iptables [-t table] {-F|-L|-Z} [chain [rulenum]] [options...]
iptables [-t table] -N chain
iptables [-t table] -X [chain]
iptables [-t table] -P chain target
iptables [-t table] -E old-chain-name new-chain-name
rule-specification = [matches...] [target]
match = -m matchname [per-match-options]
target = -j targetname [per-target-options]
DESCRIPTION
Iptables is used to set up, maintain, and inspect the tables of IPv4
packet filter rules in the Linux kernel. Several different tables may
be defined. Each table contains a number of built-in chains and may
also contain user-defined chains.
Each chain is a list of rules which can match a set of packets. Each
rule specifies what to do with a packet that matches. This is called a
‘target’, which may be a jump to a user-defined chain in the same ta-
ble.
TARGETS
A firewall rule specifies criteria for a packet and a target. If the
packet does not match, the next rule in the chain is the examined; if
it does match, then the next rule is specified by the value of the tar-
get, which can be the name of a user-defined chain or one of the spe-
cial values ACCEPT, DROP, QUEUE or RETURN.
ACCEPT means to let the packet through. DROP means to drop the packet
on the floor. QUEUE means to pass the packet to userspace. (How the
packet can be received by a userspace process differs by the particular
queue handler. 2.4.x and 2.6.x kernels up to 2.6.13 include the
ip_queue queue handler. Kernels 2.6.14 and later additionally include
the nfnetlink_queue queue handler. Packets with a target of QUEUE will
be sent to queue number ’0’ in this case. Please also see the NFQUEUE
target as described later in this man page.) RETURN means stop
traversing this chain and resume at the next rule in the previous
(calling) chain. If the end of a built-in chain is reached or a rule
in a built-in chain with target RETURN is matched, the target specified
by the chain policy determines the fate of the packet.
TABLES
There are currently three independent tables (which tables are present
at any time depends on the kernel configuration options and which
modules are present).
-t, --table table
This option specifies the packet matching table which the com-
mand should operate on. If the kernel is configured with auto-
matic module loading, an attempt will be made to load the appro-
priate module for that table if it is not already there.
The tables are as follows:
filter:
This is the default table (if no -t option is passed). It
contains the built-in chains INPUT (for packets destined to
local sockets), FORWARD (for packets being routed through
the box), and OUTPUT (for locally-generated packets).
nat:
This table is consulted when a packet that creates a new
connection is encountered. It consists of three built-ins:
PREROUTING (for altering packets as soon as they come in),
OUTPUT (for altering locally-generated packets before rout-
ing), and POSTROUTING (for altering packets as they are
about to go out).
mangle:
This table is used for specialized packet alteration. Until
kernel 2.4.17 it had two built-in chains: PREROUTING (for
altering incoming packets before routing) and OUTPUT (for
altering locally-generated packets before routing). Since
kernel 2.4.18, three other built-in chains are also sup-
ported: INPUT (for packets coming into the box itself), FOR-
WARD (for altering packets being routed through the box),
and POSTROUTING (for altering packets as they are about to
go out).
raw:
This table is used mainly for configuring exemptions from
connection tracking in combination with the NOTRACK target.
It registers at the netfilter hooks with higher priority and
is thus called before ip_conntrack, or any other IP tables.
It provides the following built-in chains: PREROUTING (for
packets arriving via any network interface) OUTPUT (for
packets generated by local processes)
OPTIONS
The options that are recognized by iptables can be divided into several
different groups.
COMMANDS
These options specify the desired action to perform. Only one of them
can be specified on the command line unless otherwise stated below. For
long versions of the command and option names, you need to use only
enough letters to ensure that iptables can differentiate it from all
other options.
-A, --append chain rule-specification
Append one or more rules to the end of the selected chain. When
the source and/or destination names resolve to more than one
address, a rule will be added for each possible address combina-
tion.
-C, --check chain rule-specification
Check whether a rule matching the specification does exist in
the selected chain. This command uses the same logic as -D to
find a matching entry, but does not alter the existing iptables
configuration and uses its exit code to indicate success or
failure.
-D, --delete chain rule-specification
-D, --delete chain rulenum
Delete one or more rules from the selected chain. There are two
versions of this command: the rule can be specified as a number
in the chain (starting at 1 for the first rule) or a rule to
match.
-I, --insert chain [rulenum] rule-specification
Insert one or more rules in the selected chain as the given rule
number. So, if the rule number is 1, the rule or rules are
inserted at the head of the chain. This is also the default if
no rule number is specified.
-R, --replace chain rulenum rule-specification
Replace a rule in the selected chain. If the source and/or des-
tination names resolve to multiple addresses, the command will
fail. Rules are numbered starting at 1.
-L, --list [chain]
List all rules in the selected chain. If no chain is selected,
all chains are listed. Like every other iptables command, it
applies to the specified table (filter is the default), so NAT
rules get listed by
iptables -t nat -n -L
Please note that it is often used with the -n option, in order
to avoid long reverse DNS lookups. It is legal to specify the
-Z (zero) option as well, in which case the chain(s) will be
atomically listed and zeroed. The exact output is affected by
the other arguments given. The exact rules are suppressed until
you use
iptables -L -v
-S, --list-rules [chain]
Print all rules in the selected chain. If no chain is selected,
all chains are printed like iptables-save. Like every other ipt-
ables command, it applies to the specified table (filter is the
default).
-F, --flush [chain]
Flush the selected chain (all the chains in the table if none is
given). This is equivalent to deleting all the rules one by
one.
-Z, --zero [chain [rulenum]]
Zero the packet and byte counters in all chains, or only the
given chain, or only the given rule in a chain. It is legal to
specify the -L, --list (list) option as well, to see the coun-
ters immediately before they are cleared. (See above.)
-N, --new-chain chain
Create a new user-defined chain by the given name. There must
be no target of that name already.
-X, --delete-chain [chain]
Delete the optional user-defined chain specified. There must be
no references to the chain. If there are, you must delete or
replace the referring rules before the chain can be deleted.
The chain must be empty, i.e. not contain any rules. If no
argument is given, it will attempt to delete every non-builtin
chain in the table.
-P, --policy chain target
Set the policy for the chain to the given target. See the sec-
tion TARGETS for the legal targets. Only built-in (non-user-
defined) chains can have policies, and neither built-in nor
user-defined chains can be policy targets.
-E, --rename-chain old-chain new-chain
Rename the user specified chain to the user supplied name. This
is cosmetic, and has no effect on the structure of the table.
-h Help. Give a (currently very brief) description of the command
syntax.
PARAMETERS
The following parameters make up a rule specification (as used in the
add, delete, insert, replace and append commands).
[!] -p, --protocol protocol
The protocol of the rule or of the packet to check. The speci-
fied protocol can be one of tcp, udp, udplite, icmp, esp, ah,
sctp or all, or it can be a numeric value, representing one of
these protocols or a different one. A protocol name from
/etc/protocols is also allowed. A "!" argument before the pro-
tocol inverts the test. The number zero is equivalent to all.
Protocol all will match with all protocols and is taken as
default when this option is omitted.
[!] -s, --source address[/mask][,...]
Source specification. Address can be either a network name, a
hostname, a network IP address (with /mask), or a plain IP
address. Hostnames will be resolved once only, before the rule
is submitted to the kernel. Please note that specifying any
name to be resolved with a remote query such as DNS is a really
bad idea. The mask can be either a network mask or a plain num-
ber, specifying the number of 1’s at the left side of the net-
work mask. Thus, a mask of 24 is equivalent to 255.255.255.0.
A "!" argument before the address specification inverts the
sense of the address. The flag --src is an alias for this
option. Multiple addresses can be specified, but this will
expand to multiple rules (when adding with -A), or will cause
multiple rules to be deleted (with -D).
[!] -d, --destination address[/mask][,...]
Destination specification. See the description of the -s
(source) flag for a detailed description of the syntax. The
flag --dst is an alias for this option.
-j, --jump target
This specifies the target of the rule; i.e., what to do if the
packet matches it. The target can be a user-defined chain
(other than the one this rule is in), one of the special builtin
targets which decide the fate of the packet immediately, or an
extension (see EXTENSIONS below). If this option is omitted in
a rule (and -g is not used), then matching the rule will have no
effect on the packet’s fate, but the counters on the rule will
be incremented.
-g, --goto chain
This specifies that the processing should continue in a user
specified chain. Unlike the --jump option return will not con-
tinue processing in this chain but instead in the chain that
called us via --jump.
[!] -i, --in-interface name
Name of an interface via which a packet was received (only for
packets entering the INPUT, FORWARD and PREROUTING chains).
When the "!" argument is used before the interface name, the
sense is inverted. If the interface name ends in a "+", then
any interface which begins with this name will match. If this
option is omitted, any interface name will match.
[!] -o, --out-interface name
Name of an interface via which a packet is going to be sent (for
packets entering the FORWARD, OUTPUT and POSTROUTING chains).
When the "!" argument is used before the interface name, the
sense is inverted. If the interface name ends in a "+", then
any interface which begins with this name will match. If this
option is omitted, any interface name will match.
[!] -f, --fragment
This means that the rule only refers to second and further frag-
ments of fragmented packets. Since there is no way to tell the
source or destination ports of such a packet (or ICMP type),
such a packet will not match any rules which specify them. When
the "!" argument precedes the "-f" flag, the rule will only
match head fragments, or unfragmented packets.
-c, --set-counters packets bytes
This enables the administrator to initialize the packet and byte
counters of a rule (during INSERT, APPEND, REPLACE operations).
OTHER OPTIONS
The following additional options can be specified:
-v, --verbose
Verbose output. This option makes the list command show the
interface name, the rule options (if any), and the TOS masks.
The packet and byte counters are also listed, with the suffix
’K’, ’M’ or ’G’ for 1000, 1,000,000 and 1,000,000,000 multipli-
ers respectively (but see the -x flag to change this). For
appending, insertion, deletion and replacement, this causes
detailed information on the rule or rules to be printed.
-n, --numeric
Numeric output. IP addresses and port numbers will be printed
in numeric format. By default, the program will try to display
them as host names, network names, or services (whenever appli-
cable).
-x, --exact
Expand numbers. Display the exact value of the packet and byte
counters, instead of only the rounded number in K’s (multiples
of 1000) M’s (multiples of 1000K) or G’s (multiples of 1000M).
This option is only relevant for the -L command.
--line-numbers
When listing rules, add line numbers to the beginning of each
rule, corresponding to that rule’s position in the chain.
--modprobe=command
When adding or inserting rules into a chain, use command to load
any necessary modules (targets, match extensions, etc).
MATCH EXTENSIONS
iptables can use extended packet matching modules. These are loaded in
two ways: implicitly, when -p or --protocol is specified, or with the
-m or --match options, followed by the matching module name; after
these, various extra command line options become available, depending
on the specific module. You can specify multiple extended match mod-
ules in one line, and you can use the -h or --help options after the
module has been specified to receive help specific to that module.
The following are included in the base package, and most of these can
be preceded by a "!" to invert the sense of the match.
addrtype
This module matches packets based on their address type. Address types
are used within the kernel networking stack and categorize addresses
into various groups. The exact definition of that group depends on the
specific layer three protocol.
The following address types are possible:
UNSPEC an unspecified address (i.e. 0.0.0.0)
UNICAST
an unicast address
LOCAL a local address
BROADCAST
a broadcast address
ANYCAST
an anycast packet
MULTICAST
a multicast address
BLACKHOLE
a blackhole address
UNREACHABLE
an unreachable address
PROHIBIT
a prohibited address
THROW FIXME
NAT FIXME
XRESOLVE
[!] --src-type type
Matches if the source address is of given type
[!] --dst-type type
Matches if the destination address is of given type
--limit-iface-in
The address type checking can be limited to the interface the
packet is coming in. This option is only valid in the PREROUT-
ING, INPUT and FORWARD chains. It cannot be specified with the
--limit-iface-out option.
--limit-iface-out
The address type checking can be limited to the interface the
packet is going out. This option is only valid in the POSTROUT-
ING, OUTPUT and FORWARD chains. It cannot be specified with the
--limit-iface-in option.
ah
This module matches the SPIs in Authentication header of IPsec packets.
[!] --ahspi spi[:spi]
cluster
Allows you to deploy gateway and back-end load-sharing clusters without
the need of load-balancers.
This match requires that all the nodes see the same packets. Thus, the
cluster match decides if this node has to handle a packet given the
following options:
--cluster-total-nodes num
Set number of total nodes in cluster.
[!] --cluster-local-node num
Set the local node number ID.
[!] --cluster-local-nodemask mask
Set the local node number ID mask. You can use this option
instead of --cluster-local-node.
--cluster-hash-seed value
Set seed value of the Jenkins hash.
Example:
iptables -A PREROUTING -t mangle -i eth1 -m cluster --clus-
ter-total-nodes 2 --cluster-local-node 1 --cluster-hash-seed
0xdeadbeef -j MARK --set-mark 0xffff
iptables -A PREROUTING -t mangle -i eth2 -m cluster --clus-
ter-total-nodes 2 --cluster-local-node 1 --cluster-hash-seed
0xdeadbeef -j MARK --set-mark 0xffff
iptables -A PREROUTING -t mangle -i eth1 -m mark ! --mark 0xffff
-j DROP
iptables -A PREROUTING -t mangle -i eth2 -m mark ! --mark 0xffff
-j DROP
And the following commands to make all nodes see the same packets:
ip maddr add 01:00:5e:00:01:01 dev eth1
ip maddr add 01:00:5e:00:01:02 dev eth2
arptables -A OUTPUT -o eth1 --h-length 6 -j mangle --mangle-mac-
s 01:00:5e:00:01:01
arptables -A INPUT -i eth1 --h-length 6 --destination-mac
01:00:5e:00:01:01 -j mangle --mangle-mac-d 00:zz:yy:xx:5a:27
arptables -A OUTPUT -o eth2 --h-length 6 -j mangle --man-
gle-mac-s 01:00:5e:00:01:02
arptables -A INPUT -i eth2 --h-length 6 --destination-mac
01:00:5e:00:01:02 -j mangle --mangle-mac-d 00:zz:yy:xx:5a:27
In the case of TCP connections, pickup facility has to be disabled to
avoid marking TCP ACK packets coming in the reply direction as valid.
echo 0 > /proc/sys/net/netfilter/nf_conntrack_tcp_loose
comment
Allows you to add comments (up to 256 characters) to any rule.
--comment comment
Example:
iptables -A INPUT -s 192.168.0.0/16 -m comment --comment "A pri-
vatized IP block"
connbytes
Match by how many bytes or packets a connection (or one of the two
flows constituting the connection) has transferred so far, or by aver-
age bytes per packet.
The counters are 64-bit and are thus not expected to overflow ;)
The primary use is to detect long-lived downloads and mark them to be
scheduled using a lower priority band in traffic control.
The transferred bytes per connection can also be viewed through ‘con-
ntrack -L‘ and accessed via ctnetlink.
NOTE that for connections which have no accounting information, the
match will always return false. The "net.netfilter.nf_conntrack_acct"
sysctl flag controls whether new connections will be byte/packet
counted. Existing connection flows will not be gaining/losing a/the
accounting structure when be sysctl flag is flipped.
[!] --connbytes from[:to]
match packets from a connection whose packets/bytes/average
packet size is more than FROM and less than TO bytes/packets. if
TO is omitted only FROM check is done. "!" is used to match
packets not falling in the range.
--connbytes-dir {original|reply|both}
which packets to consider
--connbytes-mode {packets|bytes|avgpkt}
whether to check the amount of packets, number of bytes trans-
ferred or the average size (in bytes) of all packets received so
far. Note that when "both" is used together with "avgpkt", and
data is going (mainly) only in one direction (for example HTTP),
the average packet size will be about half of the actual data
packets.
Example:
iptables .. -m connbytes --connbytes 10000:100000
--connbytes-dir both --connbytes-mode bytes ...
connlimit
Allows you to restrict the number of parallel connections to a server
per client IP address (or client address block).
[!] --connlimit-above n
Match if the number of existing connections is (not) above n.
--connlimit-mask prefix_length
Group hosts using the prefix length. For IPv4, this must be a
number between (including) 0 and 32. For IPv6, between 0 and
128.
Examples:
# allow 2 telnet connections per client host
iptables -A INPUT -p tcp --syn --dport 23 -m connlimit
--connlimit-above 2 -j REJECT
# you can also match the other way around:
iptables -A INPUT -p tcp --syn --dport 23 -m connlimit !
--connlimit-above 2 -j ACCEPT
# limit the number of parallel HTTP requests to 16 per class C sized
network (24 bit netmask)
iptables -p tcp --syn --dport 80 -m connlimit --connlimit-above
16 --connlimit-mask 24 -j REJECT
# limit the number of parallel HTTP requests to 16 for the link local
network
(ipv6) ip6tables -p tcp --syn --dport 80 -s fe80::/64 -m
connlimit --connlimit-above 16 --connlimit-mask 64 -j REJECT
connmark
This module matches the netfilter mark field associated with a connec-
tion (which can be set using the CONNMARK target below).
[!] --mark value[/mask]
Matches packets in connections with the given mark value (if a
mask is specified, this is logically ANDed with the mark before
the comparison).
conntrack
This module, when combined with connection tracking, allows access to
the connection tracking state for this packet/connection.
[!] --ctstate statelist
statelist is a comma separated list of the connection states to
match. Possible states are listed below.
[!] --ctproto l4proto
Layer-4 protocol to match (by number or name)
[!] --ctorigsrc address[/mask]
[!] --ctorigdst address[/mask]
[!] --ctreplsrc address[/mask]
[!] --ctrepldst address[/mask]
Match against original/reply source/destination address
[!] --ctorigsrcport port
[!] --ctorigdstport port
[!] --ctreplsrcport port
[!] --ctrepldstport port
Match against original/reply source/destination port
(TCP/UDP/etc.) or GRE key.
[!] --ctstatus statelist
statuslist is a comma separated list of the connection statuses
to match. Possible statuses are listed below.
[!] --ctexpire time[:time]
Match remaining lifetime in seconds against given value or range
of values (inclusive)
--ctdir {ORIGINAL|REPLY}
Match packets that are flowing in the specified direction. If
this flag is not specified at all, matches packets in both
directions.
States for --ctstate:
INVALID
meaning that the packet is associated with no known connection
NEW meaning that the packet has started a new connection, or other-
wise associated with a connection which has not seen packets in
both directions, and
ESTABLISHED
meaning that the packet is associated with a connection which
has seen packets in both directions,
RELATED
meaning that the packet is starting a new connection, but is
associated with an existing connection, such as an FTP data
transfer, or an ICMP error.
SNAT A virtual state, matching if the original source address differs
from the reply destination.
DNAT A virtual state, matching if the original destination differs
from the reply source.
Statuses for --ctstatus:
NONE None of the below.
EXPECTED
This is an expected connection (i.e. a conntrack helper set it
up)
SEEN_REPLY
Conntrack has seen packets in both directions.
ASSURED
Conntrack entry should never be early-expired.
CONFIRMED
Connection is confirmed: originating packet has left box.
dccp
[!] --source-port,--sport port[:port]
[!] --destination-port,--dport port[:port]
[!] --dccp-types mask
Match when the DCCP packet type is one of ’mask’. ’mask’ is a
comma-separated list of packet types. Packet types are: REQUEST
RESPONSE DATA ACK DATAACK CLOSEREQ CLOSE RESET SYNC SYNCACK
INVALID.
[!] --dccp-option number
Match if DCP option set.
dscp
This module matches the 6 bit DSCP field within the TOS field in the IP
header. DSCP has superseded TOS within the IETF.
[!] --dscp value
Match against a numeric (decimal or hex) value [0-63].
[!] --dscp-class class
Match the DiffServ class. This value may be any of the BE, EF,
AFxx or CSx classes. It will then be converted into its accord-
ing numeric value.
ecn
This allows you to match the ECN bits of the IPv4 and TCP header. ECN
is the Explicit Congestion Notification mechanism as specified in
RFC3168
[!] --ecn-tcp-cwr
This matches if the TCP ECN CWR (Congestion Window Received) bit
is set.
[!] --ecn-tcp-ece
This matches if the TCP ECN ECE (ECN Echo) bit is set.
[!] --ecn-ip-ect num
This matches a particular IPv4 ECT (ECN-Capable Transport). You
have to specify a number between ‘0’ and ‘3’.
esp
This module matches the SPIs in ESP header of IPsec packets.
[!] --espspi spi[:spi]
hashlimit
hashlimit uses hash buckets to express a rate limiting match (like the
limit match) for a group of connections using a single iptables rule.
Grouping can be done per-hostgroup (source and/or destination address)
and/or per-port. It gives you the ability to express "N packets per
time quantum per group":
matching on source host
"1000 packets per second for every host in 192.168.0.0/16"
matching on source prot
"100 packets per second for every service of 192.168.1.1"
matching on subnet
"10000 packets per minute for every /28 subnet in 10.0.0.0/8"
A hash limit option (--hashlimit-upto, --hashlimit-above) and --hash-
limit-name are required.
--hashlimit-upto amount[/second|/minute|/hour|/day]
Match if the rate is below or equal to amount/quantum. It is
specified as a number, with an optional time quantum suffix; the
default is 3/hour.
--hashlimit-above amount[/second|/minute|/hour|/day]
Match if the rate is above amount/quantum.
--hashlimit-burst amount
Maximum initial number of packets to match: this number gets
recharged by one every time the limit specified above is not
reached, up to this number; the default is 5.
--hashlimit-mode {srcip|srcport|dstip|dstport},...
A comma-separated list of objects to take into consideration. If
no --hashlimit-mode option is given, hashlimit acts like limit,
but at the expensive of doing the hash housekeeping.
--hashlimit-srcmask prefix
When --hashlimit-mode srcip is used, all source addresses
encountered will be grouped according to the given prefix length
and the so-created subnet will be subject to hashlimit. prefix
must be between (inclusive) 0 and 32. Note that --hashlimit-src-
mask 0 is basically doing the same thing as not specifying srcip
for --hashlimit-mode, but is technically more expensive.
--hashlimit-dstmask prefix
Like --hashlimit-srcmask, but for destination addresses.
--hashlimit-name foo
The name for the /proc/net/ipt_hashlimit/foo entry.
--hashlimit-htable-size buckets
The number of buckets of the hash table
--hashlimit-htable-max entries
Maximum entries in the hash.
--hashlimit-htable-expire msec
After how many milliseconds do hash entries expire.
--hashlimit-htable-gcinterval msec
How many milliseconds between garbage collection intervals.
helper
This module matches packets related to a specific conntrack-helper.
[!] --helper string
Matches packets related to the specified conntrack-helper.
string can be "ftp" for packets related to a ftp-session on
default port. For other ports append -portnr to the value, ie.
"ftp-2121".
Same rules apply for other conntrack-helpers.
icmp
This extension can be used if ‘--protocol icmp’ is specified. It pro-
vides the following option:
[!] --icmp-type {type[/code]|typename}
This allows specification of the ICMP type, which can be a
numeric ICMP type, type/code pair, or one of the ICMP type names
shown by the command
iptables -p icmp -h
iprange
This matches on a given arbitrary range of IP addresses.
[!] --src-range from[-to]
Match source IP in the specified range.
[!] --dst-range from[-to]
Match destination IP in the specified range.
length
This module matches the length of the layer-3 payload (e.g. layer-4
packet) of a packet against a specific value or range of values.
[!] --length length[:length]
limit
This module matches at a limited rate using a token bucket filter. A
rule using this extension will match until this limit is reached
(unless the ‘!’ flag is used). It can be used in combination with the
LOG target to give limited logging, for example.
--limit rate[/second|/minute|/hour|/day]
Maximum average matching rate: specified as a number, with an
optional ‘/second’, ‘/minute’, ‘/hour’, or ‘/day’ suffix; the
default is 3/hour.
--limit-burst number
Maximum initial number of packets to match: this number gets
recharged by one every time the limit specified above is not
reached, up to this number; the default is 5.
mac
[!] --mac-source address
Match source MAC address. It must be of the form
XX:XX:XX:XX:XX:XX. Note that this only makes sense for packets
coming from an Ethernet device and entering the PREROUTING, FOR-
WARD or INPUT chains.
mark
This module matches the netfilter mark field associated with a packet
(which can be set using the MARK target below).
[!] --mark value[/mask]
Matches packets with the given unsigned mark value (if a mask is
specified, this is logically ANDed with the mask before the com-
parison).
multiport
This module matches a set of source or destination ports. Up to 15
ports can be specified. A port range (port:port) counts as two ports.
It can only be used in conjunction with -p tcp or -p udp.
[!] --source-ports,--sports port[,port|,port:port]...
Match if the source port is one of the given ports. The flag
--sports is a convenient alias for this option. Multiple ports
or port ranges are separated using a comma, and a port range is
specified using a colon. 53,1024:65535 would therefore match
ports 53 and all from 1024 through 65535.
[!] --destination-ports,--dports port[,port|,port:port]...
Match if the destination port is one of the given ports. The
flag --dports is a convenient alias for this option.
[!] --ports port[,port|,port:port]...
Match if either the source or destination ports are equal to one
of the given ports.
owner
This module attempts to match various characteristics of the packet
creator, for locally generated packets. This match is only valid in the
OUTPUT and POSTROUTING chains. Forwarded packets do not have any socket
associated with them. Packets from kernel threads do have a socket, but
usually no owner.
[!] --uid-owner username
[!] --uid-owner userid[-userid]
Matches if the packet socket’s file structure (if it has one) is
owned by the given user. You may also specify a numerical UID,
or an UID range.
[!] --gid-owner groupname
[!] --gid-owner groupid[-groupid]
Matches if the packet socket’s file structure is owned by the
given group. You may also specify a numerical GID, or a GID
range.
[!] --socket-exists
Matches if the packet is associated with a socket.
physdev
This module matches on the bridge port input and output devices
enslaved to a bridge device. This module is a part of the infrastruc-
ture that enables a transparent bridging IP firewall and is only useful
for kernel versions above version 2.5.44.
[!] --physdev-in name
Name of a bridge port via which a packet is received (only for
packets entering the INPUT, FORWARD and PREROUTING chains). If
the interface name ends in a "+", then any interface which
begins with this name will match. If the packet didn’t arrive
through a bridge device, this packet won’t match this option,
unless ’!’ is used.
[!] --physdev-out name
Name of a bridge port via which a packet is going to be sent
(for packets entering the FORWARD, OUTPUT and POSTROUTING
chains). If the interface name ends in a "+", then any inter-
face which begins with this name will match. Note that in the
nat and mangle OUTPUT chains one cannot match on the bridge out-
put port, however one can in the filter OUTPUT chain. If the
packet won’t leave by a bridge device or if it is yet unknown
what the output device will be, then the packet won’t match this
option, unless ’!’ is used.
[!] --physdev-is-in
Matches if the packet has entered through a bridge interface.
[!] --physdev-is-out
Matches if the packet will leave through a bridge interface.
[!] --physdev-is-bridged
Matches if the packet is being bridged and therefore is not
being routed. This is only useful in the FORWARD and POSTROUT-
ING chains.
pkttype
This module matches the link-layer packet type.
[!] --pkt-type {unicast|broadcast|multicast}
policy
This modules matches the policy used by IPsec for handling a packet.
--dir {in|out}
Used to select whether to match the policy used for decapsula-
tion or the policy that will be used for encapsulation. in is
valid in the PREROUTING, INPUT and FORWARD chains, out is valid
in the POSTROUTING, OUTPUT and FORWARD chains.
--pol {none|ipsec}
Matches if the packet is subject to IPsec processing.
--strict
Selects whether to match the exact policy or match if any rule
of the policy matches the given policy.
[!] --reqid id
Matches the reqid of the policy rule. The reqid can be specified
with setkey(8) using unique:id as level.
[!] --spi spi
Matches the SPI of the SA.
[!] --proto {ah|esp|ipcomp}
Matches the encapsulation protocol.
[!] --mode {tunnel|transport}
Matches the encapsulation mode.
[!] --tunnel-src addr[/mask]
Matches the source end-point address of a tunnel mode SA. Only
valid with --mode tunnel.
[!] --tunnel-dst addr[/mask]
Matches the destination end-point address of a tunnel mode SA.
Only valid with --mode tunnel.
--next Start the next element in the policy specification. Can only be
used with --strict.
quota
Implements network quotas by decrementing a byte counter with each
packet.
--quota bytes
The quota in bytes.
rateest
The rate estimator can match on estimated rates as collected by the
RATEEST target. It supports matching on absolute bps/pps values, com-
paring two rate estimators and matching on the difference between two
rate estimators.
--rateest1 name
Name of the first rate estimator.
--rateest2 name
Name of the second rate estimator (if difference is to be calcu-
lated).
--rateest-delta
Compare difference(s) to given rate(s)
--rateest1-bps value
--rateest2-bps value
Compare bytes per second.
--rateest1-pps value
--rateest2-pps value
Compare packets per second.
[!] --rateest-lt
Match if rate is less than given rate/estimator.
[!] --rateest-gt
Match if rate is greater than given rate/estimator.
[!] --rateest-eq
Match if rate is equal to given rate/estimator.
Example: This is what can be used to route outgoing data connections
from an FTP server over two lines based on the available bandwidth at
the time the data connection was started:
# Estimate outgoing rates
iptables -t mangle -A POSTROUTING -o eth0 -j RATEEST --rateest-name
eth0 --rateest-interval 250ms --rateest-ewma 0.5s
iptables -t mangle -A POSTROUTING -o ppp0 -j RATEEST --rateest-name
ppp0 --rateest-interval 250ms --rateest-ewma 0.5s
# Mark based on available bandwidth
iptables -t mangle -A balance -m conntrack --ctstate NEW -m helper
--helper ftp -m rateest --rateest-delta --rateest1 eth0 --rateest-bps1
2.5mbit --rateest-gt --rateest2 ppp0 --rateest-bps2 2mbit -j CONNMARK
--set-mark 1
iptables -t mangle -A balance -m conntrack --ctstate NEW -m helper
--helper ftp -m rateest --rateest-delta --rateest1 ppp0 --rateest-bps1
2mbit --rateest-gt --rateest2 eth0 --rateest-bps2 2.5mbit -j CONNMARK
--set-mark 2
iptables -t mangle -A balance -j CONNMARK --restore-mark
realm
This matches the routing realm. Routing realms are used in complex
routing setups involving dynamic routing protocols like BGP.
[!] --realm value[/mask]
Matches a given realm number (and optionally mask). If not a
number, value can be a named realm from /etc/iproute2/rt_realms
(mask can not be used in that case).
recent
Allows you to dynamically create a list of IP addresses and then match
against that list in a few different ways.
For example, you can create a "badguy" list out of people attempting to
connect to port 139 on your firewall and then DROP all future packets
from them without considering them.
--set, --rcheck, --update and --remove are mutually exclusive.
--name name
Specify the list to use for the commands. If no name is given
then DEFAULT will be used.
[!] --set
This will add the source address of the packet to the list. If
the source address is already in the list, this will update the
existing entry. This will always return success (or failure if !
is passed in).
--rsource
Match/save the source address of each packet in the recent list
table. This is the default.
--rdest
Match/save the destination address of each packet in the recent
list table.
[!] --rcheck
Check if the source address of the packet is currently in the
list.
[!] --update
Like --rcheck, except it will update the "last seen" timestamp
if it matches.
[!] --remove
Check if the source address of the packet is currently in the
list and if so that address will be removed from the list and
the rule will return true. If the address is not found, false is
returned.
--seconds seconds
This option must be used in conjunction with one of --rcheck or
--update. When used, this will narrow the match to only happen
when the address is in the list and was seen within the last
given number of seconds.
--hitcount hits
This option must be used in conjunction with one of --rcheck or
--update. When used, this will narrow the match to only happen
when the address is in the list and packets had been received
greater than or equal to the given value. This option may be
used along with --seconds to create an even narrower match
requiring a certain number of hits within a specific time frame.
The maximum value for the hitcount parameter is given by the
"ip_pkt_list_tot" parameter of the xt_recent kernel module.
Exceeding this value on the command line will cause the rule to
be rejected.
--rttl This option may only be used in conjunction with one of --rcheck
or --update. When used, this will narrow the match to only hap-
pen when the address is in the list and the TTL of the current
packet matches that of the packet which hit the --set rule. This
may be useful if you have problems with people faking their
source address in order to DoS you via this module by disallow-
ing others access to your site by sending bogus packets to you.
Examples:
iptables -A FORWARD -m recent --name badguy --rcheck --seconds
60 -j DROP
iptables -A FORWARD -p tcp -i eth0 --dport 139 -m recent --name
badguy --set -j DROP
Steve’s ipt_recent website (http://snowman.net/projects/ipt_recent/)
also has some examples of usage.
/proc/net/xt_recent/* are the current lists of addresses and
information about each entry of each list.
Each file in /proc/net/xt_recent/ can be read from to see the current
list or written two using the following commands to modify the list:
echo +addr >/proc/net/xt_recent/DEFAULT
to add addr to the DEFAULT list
echo -addr >/proc/net/xt_recent/DEFAULT
to remove addr from the DEFAULT list
echo / >/proc/net/xt_recent/DEFAULT
to flush the DEFAULT list (remove all entries).
The module itself accepts parameters, defaults shown:
ip_list_tot=100
Number of addresses remembered per table.
ip_pkt_list_tot=20
Number of packets per address remembered.
ip_list_hash_size=0
Hash table size. 0 means to calculate it based on ip_list_tot,
default: 512.
ip_list_perms=0644
Permissions for /proc/net/xt_recent/* files.
ip_list_uid=0
Numerical UID for ownership of /proc/net/xt_recent/* files.
ip_list_gid=0
Numerical GID for ownership of /proc/net/xt_recent/* files.
sctp
[!] --source-port,--sport port[:port]
[!] --destination-port,--dport port[:port]
[!] --chunk-types {all|any|only} chunktype[:flags] [...]
The flag letter in upper case indicates that the flag is to
match if set, in the lower case indicates to match if unset.
Chunk types: DATA INIT INIT_ACK SACK HEARTBEAT HEARTBEAT_ACK
ABORT SHUTDOWN SHUTDOWN_ACK ERROR COOKIE_ECHO COOKIE_ACK
ECN_ECNE ECN_CWR SHUTDOWN_COMPLETE ASCONF ASCONF_ACK
chunk type available flags
DATA U B E u b e
ABORT T t
SHUTDOWN_COMPLETE T t
(lowercase means flag should be "off", uppercase means "on")
Examples:
iptables -A INPUT -p sctp --dport 80 -j DROP
iptables -A INPUT -p sctp --chunk-types any DATA,INIT -j DROP
iptables -A INPUT -p sctp --chunk-types any DATA:Be -j ACCEPT
set
This module matches IP sets which can be defined by ipset(8).
[!] --match-set setname flag[,flag]...
where flags are the comma separated list of src and/or dst spec-
ifications and there can be no more than six of them. Hence the
command
iptables -A FORWARD -m set --match-set test src,dst
will match packets, for which (if the set type is ipportmap) the
source address and destination port pair can be found in the
specified set. If the set type of the specified set is single
dimension (for example ipmap), then the command will match
packets for which the source address can be found in the speci-
fied set.
The option --match-set can be replaced by --set if that does not clash
with an option of other extensions.
Use of -m set requires that ipset kernel support is provided. As stan-
dard kernels do not ship this currently, the ipset or Xtables-addons
package needs to be installed.
socket
This matches if an open socket can be found by doing a socket lookup on
the packet.
--transparent
Ignore non-transparent sockets.
state
This module, when combined with connection tracking, allows access to
the connection tracking state for this packet.
[!] --state state
Where state is a comma separated list of the connection states
to match. Possible states are INVALID meaning that the packet
could not be identified for some reason which includes running
out of memory and ICMP errors which don’t correspond to any
known connection, ESTABLISHED meaning that the packet is associ-
ated with a connection which has seen packets in both direc-
tions, NEW meaning that the packet has started a new connection,
or otherwise associated with a connection which has not seen
packets in both directions, and RELATED meaning that the packet
is starting a new connection, but is associated with an existing
connection, such as an FTP data transfer, or an ICMP error.
statistic
This module matches packets based on some statistic condition. It sup-
ports two distinct modes settable with the --mode option.
Supported options:
--mode mode
Set the matching mode of the matching rule, supported modes are
random and nth.
--probability p
Set the probability from 0 to 1 for a packet to be randomly
matched. It works only with the random mode.
--every n
Match one packet every nth packet. It works only with the nth
mode (see also the --packet option).
--packet p
Set the initial counter value (0 <= p <= n-1, default 0) for the
nth mode.
string
This modules matches a given string by using some pattern matching
strategy. It requires a linux kernel >= 2.6.14.
--algo {bm|kmp}
Select the pattern matching strategy. (bm = Boyer-Moore, kmp =
Knuth-Pratt-Morris)
--from offset
Set the offset from which it starts looking for any matching. If
not passed, default is 0.
--to offset
Set the offset from which it starts looking for any matching. If
not passed, default is the packet size.
[!] --string pattern
Matches the given pattern.
[!] --hex-string pattern
Matches the given pattern in hex notation.
tcp
These extensions can be used if ‘--protocol tcp’ is specified. It pro-
vides the following options:
[!] --source-port,--sport port[:port]
Source port or port range specification. This can either be a
service name or a port number. An inclusive range can also be
specified, using the format first:last. If the first port is
omitted, "0" is assumed; if the last is omitted, "65535" is
assumed. If the first port is greater than the second one they
will be swapped. The flag --sport is a convenient alias for
this option.
[!] --destination-port,--dport port[:port]
Destination port or port range specification. The flag --dport
is a convenient alias for this option.
[!] --tcp-flags mask comp
Match when the TCP flags are as specified. The first argument
mask is the flags which we should examine, written as a comma-
separated list, and the second argument comp is a comma-sepa-
rated list of flags which must be set. Flags are: SYN ACK FIN
RST URG PSH ALL NONE. Hence the command
iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN
will only match packets with the SYN flag set, and the ACK, FIN
and RST flags unset.
[!] --syn
Only match TCP packets with the SYN bit set and the ACK,RST and
FIN bits cleared. Such packets are used to request TCP connec-
tion initiation; for example, blocking such packets coming in an
interface will prevent incoming TCP connections, but outgoing
TCP connections will be unaffected. It is equivalent to
--tcp-flags SYN,RST,ACK,FIN SYN. If the "!" flag precedes the
"--syn", the sense of the option is inverted.
[!] --tcp-option number
Match if TCP option set.
tcpmss
This matches the TCP MSS (maximum segment size) field of the TCP
header. You can only use this on TCP SYN or SYN/ACK packets, since the
MSS is only negotiated during the TCP handshake at connection startup
time.
[!] --mss value[:value]
Match a given TCP MSS value or range.
time
This matches if the packet arrival time/date is within a given range.
All options are optional, but are ANDed when specified.
--datestart YYYY[-MM[-DD[Thh[:mm[:ss]]]]]
--datestop YYYY[-MM[-DD[Thh[:mm[:ss]]]]]
Only match during the given time, which must be in ISO 8601 "T"
notation. The possible time range is 1970-01-01T00:00:00 to
2038-01-19T04:17:07.
If --datestart or --datestop are not specified, it will default
to 1970-01-01 and 2038-01-19, respectively.
--timestart hh:mm[:ss]
--timestop hh:mm[:ss]
Only match during the given daytime. The possible time range is
00:00:00 to 23:59:59. Leading zeroes are allowed (e.g. "06:03")
and correctly interpreted as base-10.
[!] --monthdays day[,day...]
Only match on the given days of the month. Possible values are 1
to 31. Note that specifying 31 will of course not match on
months which do not have a 31st day; the same goes for 28- or
29-day February.
[!] --weekdays day[,day...]
Only match on the given weekdays. Possible values are Mon, Tue,
Wed, Thu, Fri, Sat, Sun, or values from 1 to 7, respectively.
You may also use two-character variants (Mo, Tu, etc.).
--utc
Interpret the times given for --datestart, --datestop, --times-
tart and --timestop to be UTC.
--localtz
Interpret the times given for --datestart, --datestop, --times-
tart and --timestop to be local kernel time. (Default)
EXAMPLES. To match on weekends, use:
-m time --weekdays Sa,Su
Or, to match (once) on a national holiday block:
-m time --datestart 2007-12-24 --datestop 2007-12-27
Since the stop time is actually inclusive, you would need the following
stop time to not match the first second of the new day:
-m time --datestart 2007-01-01T17:00 --datestop
2007-01-01T23:59:59
During lunch hour:
-m time --timestart 12:30 --timestop 13:30
The fourth Friday in the month:
-m time --weekdays Fr --monthdays 22,23,24,25,26,27,28
(Note that this exploits a certain mathematical property. It is not
possible to say "fourth Thursday OR fourth Friday" in one rule. It is
possible with multiple rules, though.)
tos
This module matches the 8-bit Type of Service field in the IPv4 header
(i.e. including the "Precedence" bits) or the (also 8-bit) Priority
field in the IPv6 header.
[!] --tos value[/mask]
Matches packets with the given TOS mark value. If a mask is
specified, it is logically ANDed with the TOS mark before the
comparison.
[!] --tos symbol
You can specify a symbolic name when using the tos match for
IPv4. The list of recognized TOS names can be obtained by call-
ing iptables with -m tos -h. Note that this implies a mask of
0x3F, i.e. all but the ECN bits.
ttl
This module matches the time to live field in the IP header.
--ttl-eq ttl
Matches the given TTL value.
--ttl-gt ttl
Matches if TTL is greater than the given TTL value.
--ttl-lt ttl
Matches if TTL is less than the given TTL value.
u32
U32 tests whether quantities of up to 4 bytes extracted from a packet
have specified values. The specification of what to extract is general
enough to find data at given offsets from tcp headers or payloads.
[!] --u32 tests
The argument amounts to a program in a small language described
below.
tests := location "=" value | tests "&&" location "=" value
value := range | value "," range
range := number | number ":" number
a single number, n, is interpreted the same as n:n. n:m is interpreted
as the range of numbers >=n and <=m.
location := number | location operator number
operator := "&" | "<<" | ">>" | "@"
The operators &, <<, >> and && mean the same as in C. The = is really
a set membership operator and the value syntax describes a set. The @
operator is what allows moving to the next header and is described fur-
ther below.
There are currently some artificial implementation limits on the size
of the tests:
* no more than 10 of "=" (and 9 "&&"s) in the u32 argument
* no more than 10 ranges (and 9 commas) per value
* no more than 10 numbers (and 9 operators) per location
To describe the meaning of location, imagine the following machine that
interprets it. There are three registers:
A is of type char *, initially the address of the IP header
B and C are unsigned 32 bit integers, initially zero
The instructions are:
number B = number;
C = (*(A+B)<<24) + (*(A+B+1)<<16) + (*(A+B+2)<<8) + *(A+B+3)
&number C = C & number
<< number C = C << number
>> number C = C >> number
@number A = A + C; then do the instruction number
Any access of memory outside [skb->data,skb->end] causes the match to
fail. Otherwise the result of the computation is the final value of C.
Whitespace is allowed but not required in the tests. However, the char-
acters that do occur there are likely to require shell quoting, so it
is a good idea to enclose the arguments in quotes.
Example:
match IP packets with total length >= 256
The IP header contains a total length field in bytes 2-3.
--u32 "0 & 0xFFFF = 0x100:0xFFFF"
read bytes 0-3
AND that with 0xFFFF (giving bytes 2-3), and test whether that
is in the range [0x100:0xFFFF]
Example: (more realistic, hence more complicated)
match ICMP packets with icmp type 0
First test that it is an ICMP packet, true iff byte 9 (protocol)
= 1
--u32 "6 & 0xFF = 1 && ...
read bytes 6-9, use & to throw away bytes 6-8 and compare the
result to 1. Next test that it is not a fragment. (If so, it
might be part of such a packet but we cannot always tell.) N.B.:
This test is generally needed if you want to match anything
beyond the IP header. The last 6 bits of byte 6 and all of byte
7 are 0 iff this is a complete packet (not a fragment). Alterna-
tively, you can allow first fragments by only testing the last 5
bits of byte 6.
... 4 & 0x3FFF = 0 && ...
Last test: the first byte past the IP header (the type) is 0.
This is where we have to use the @syntax. The length of the IP
header (IHL) in 32 bit words is stored in the right half of byte
0 of the IP header itself.
... 0 >> 22 & 0x3C @ 0 >> 24 = 0"
The first 0 means read bytes 0-3, >>22 means shift that 22 bits
to the right. Shifting 24 bits would give the first byte, so
only 22 bits is four times that plus a few more bits. &3C then
eliminates the two extra bits on the right and the first four
bits of the first byte. For instance, if IHL=5, then the IP
header is 20 (4 x 5) bytes long. In this case, bytes 0-1 are (in
binary) xxxx0101 yyzzzzzz, >>22 gives the 10 bit value
xxxx0101yy and &3C gives 010100. @ means to use this number as a
new offset into the packet, and read four bytes starting from
there. This is the first 4 bytes of the ICMP payload, of which
byte 0 is the ICMP type. Therefore, we simply shift the value 24
to the right to throw out all but the first byte and compare the
result with 0.
Example:
TCP payload bytes 8-12 is any of 1, 2, 5 or 8
First we test that the packet is a tcp packet (similar to ICMP).
--u32 "6 & 0xFF = 6 && ...
Next, test that it is not a fragment (same as above).
... 0 >> 22 & 0x3C @ 12 >> 26 & 0x3C @ 8 = 1,2,5,8"
0>>22&3C as above computes the number of bytes in the IP header.
@ makes this the new offset into the packet, which is the start
of the TCP header. The length of the TCP header (again in 32 bit
words) is the left half of byte 12 of the TCP header. The
12>>26&3C computes this length in bytes (similar to the IP
header before). "@" makes this the new offset, which is the
start of the TCP payload. Finally, 8 reads bytes 8-12 of the
payload and = checks whether the result is any of 1, 2, 5 or 8.
udp
These extensions can be used if ‘--protocol udp’ is specified. It pro-
vides the following options:
[!] --source-port,--sport port[:port]
Source port or port range specification. See the description of
the --source-port option of the TCP extension for details.
[!] --destination-port,--dport port[:port]
Destination port or port range specification. See the descrip-
tion of the --destination-port option of the TCP extension for
details.
unclean
This module takes no options, but attempts to match packets which seem
malformed or unusual. This is regarded as experimental.
TARGET EXTENSIONS
iptables can use extended target modules: the following are included in
the standard distribution.
AUDIT
This target allows to create audit records for packets hitting the tar-
get. It can be used to record accepted, dropped, and rejected packets.
See auditd(8) for additional details.
--type {accept|drop|reject}
Set type of audit record.
Example:
iptables -N AUDIT_DROP
iptables -A AUDIT_DROP -j AUDIT --type drop
iptables -A AUDIT_DROP -j DROP
CHECKSUM
This target allows to selectively work around broken/old applications.
It can only be used in the mangle table.
--checksum-fill
Compute and fill in the checksum in a packet that lacks a check-
sum. This is particularly useful, if you need to work around
old applications such as dhcp clients, that do not work well
with checksum offloads, but don’t want to disable checksum
offload in your device.
CLASSIFY
This module allows you to set the skb->priority value (and thus clas-
sify the packet into a specific CBQ class).
--set-class major:minor
Set the major and minor class value. The values are always
interpreted as hexadecimal even if no 0x prefix is given.
CLUSTERIP
This module allows you to configure a simple cluster of nodes that
share a certain IP and MAC address without an explicit load balancer in
front of them. Connections are statically distributed between the
nodes in this cluster.
--new Create a new ClusterIP. You always have to set this on the
first rule for a given ClusterIP.
--hashmode mode
Specify the hashing mode. Has to be one of sourceip, sour-
ceip-sourceport, sourceip-sourceport-destport.
--clustermac mac
Specify the ClusterIP MAC address. Has to be a link-layer multi-
cast address
--total-nodes num
Number of total nodes within this cluster.
--local-node num
Local node number within this cluster.
--hash-init rnd
Specify the random seed used for hash initialization.
CONNMARK
This module sets the netfilter mark value associated with a connection.
The mark is 32 bits wide.
--set-xmark value[/mask]
Zero out the bits given by mask and XOR value into the ctmark.
--save-mark [--nfmask nfmask] [--ctmask ctmask]
Copy the packet mark (nfmark) to the connection mark (ctmark)
using the given masks. The new nfmark value is determined as
follows:
ctmark = (ctmark & ~ctmask) ^ (nfmark & nfmask)
i.e. ctmask defines what bits to clear and nfmask what bits of
the nfmark to XOR into the ctmark. ctmask and nfmask default to
0xFFFFFFFF.
--restore-mark [--nfmask nfmask] [--ctmask ctmask]
Copy the connection mark (ctmark) to the packet mark (nfmark)
using the given masks. The new ctmark value is determined as
follows:
nfmark = (nfmark & ~nfmask) ^ (ctmark & ctmask);
i.e. nfmask defines what bits to clear and ctmask what bits of
the ctmark to XOR into the nfmark. ctmask and nfmask default to
0xFFFFFFFF.
--restore-mark is only valid in the mangle table.
The following mnemonics are available for --set-xmark:
--and-mark bits
Binary AND the ctmark with bits. (Mnemonic for --set-xmark
0/invbits, where invbits is the binary negation of bits.)
--or-mark bits
Binary OR the ctmark with bits. (Mnemonic for --set-xmark
bits/bits.)
--xor-mark bits
Binary XOR the ctmark with bits. (Mnemonic for --set-xmark
bits/0.)
--set-mark value[/mask]
Set the connection mark. If a mask is specified then only those
bits set in the mask are modified.
--save-mark [--mask mask]
Copy the nfmark to the ctmark. If a mask is specified, only
those bits are copied.
--restore-mark [--mask mask]
Copy the ctmark to the nfmark. If a mask is specified, only
those bits are copied. This is only valid in the mangle table.
CONNSECMARK
This module copies security markings from packets to connections (if
unlabeled), and from connections back to packets (also only if unla-
beled). Typically used in conjunction with SECMARK, it is only valid
in the mangle table.
--save If the packet has a security marking, copy it to the connection
if the connection is not marked.
--restore
If the packet does not have a security marking, and the connec-
tion does, copy the security marking from the connection to the
packet.
DNAT
This target is only valid in the nat table, in the PREROUTING and OUT-
PUT chains, and user-defined chains which are only called from those
chains. It specifies that the destination address of the packet should
be modified (and all future packets in this connection will also be
mangled), and rules should cease being examined. It takes one type of
option:
--to-destination [ipaddr][-ipaddr][:port[-port]]
which can specify a single new destination IP address, an inclu-
sive range of IP addresses, and optionally, a port range (which
is only valid if the rule also specifies -p tcp or -p udp). If
no port range is specified, then the destination port will never
be modified. If no IP address is specified then only the desti-
nation port will be modified.
In Kernels up to 2.6.10 you can add several --to-destination
options. For those kernels, if you specify more than one desti-
nation address, either via an address range or multiple
--to-destination options, a simple round-robin (one after
another in cycle) load balancing takes place between these
addresses. Later Kernels (>= 2.6.11-rc1) don’t have the ability
to NAT to multiple ranges anymore.
--random
If option --random is used then port mapping will be randomized
(kernel >= 2.6.22).
--persistent
Gives a client the same source-/destination-address for each
connection. This supersedes the SAME target. Support for per-
sistent mappings is available from 2.6.29-rc2.
DSCP
This target allows to alter the value of the DSCP bits within the TOS
header of the IPv4 packet. As this manipulates a packet, it can only
be used in the mangle table.
--set-dscp value
Set the DSCP field to a numerical value (can be decimal or hex)
--set-dscp-class class
Set the DSCP field to a DiffServ class.
ECN
This target allows to selectively work around known ECN blackholes. It
can only be used in the mangle table.
--ecn-tcp-remove
Remove all ECN bits from the TCP header. Of course, it can only
be used in conjunction with -p tcp.
LOG
Turn on kernel logging of matching packets. When this option is set
for a rule, the Linux kernel will print some information on all match-
ing packets (like most IP header fields) via the kernel log (where it
can be read with dmesg or syslogd(8)). This is a "non-terminating tar-
get", i.e. rule traversal continues at the next rule. So if you want
to LOG the packets you refuse, use two separate rules with the same
matching criteria, first using target LOG then DROP (or REJECT).
--log-level level
Level of logging (numeric or see syslog.conf(5)).
--log-prefix prefix
Prefix log messages with the specified prefix; up to 29 letters
long, and useful for distinguishing messages in the logs.
--log-tcp-sequence
Log TCP sequence numbers. This is a security risk if the log is
readable by users.
--log-tcp-options
Log options from the TCP packet header.
--log-ip-options
Log options from the IP packet header.
--log-uid
Log the userid of the process which generated the packet.
MARK
This target is used to set the Netfilter mark value associated with the
packet. The target can only be used in the mangle table. It can, for
example, be used in conjunction with routing based on fwmark (needs
iproute2). The mark field is 32 bits wide.
--set-xmark value[/mask]
Zeroes out the bits given by mask and XORs value into the packet
mark ("nfmark"). If mask is omitted, 0xFFFFFFFF is assumed.
--set-mark value[/mask]
Zeroes out the bits given by mask and ORs value into the packet
mark. If mask is omitted, 0xFFFFFFFF is assumed.
The following mnemonics are available:
--and-mark bits
Binary AND the nfmark with bits. (Mnemonic for --set-xmark
0/invbits, where invbits is the binary negation of bits.)
--or-mark bits
Binary OR the nfmark with bits. (Mnemonic for --set-xmark
bits/bits.)
--xor-mark bits
Binary XOR the nfmark with bits. (Mnemonic for --set-xmark
bits/0.)
MASQUERADE
This target is only valid in the nat table, in the POSTROUTING chain.
It should only be used with dynamically assigned IP (dialup) connec-
tions: if you have a static IP address, you should use the SNAT target.
Masquerading is equivalent to specifying a mapping to the IP address of
the interface the packet is going out, but also has the effect that
connections are forgotten when the interface goes down. This is the
correct behavior when the next dialup is unlikely to have the same
interface address (and hence any established connections are lost any-
way). It takes one option:
--to-ports port[-port]
This specifies a range of source ports to use, overriding the
default SNAT source port-selection heuristics (see above). This
is only valid if the rule also specifies -p tcp or -p udp.
--random
Randomize source port mapping If option --random is used then
port mapping will be randomized (kernel >= 2.6.21).
MIRROR
This is an experimental demonstration target which inverts the source
and destination fields in the IP header and retransmits the packet. It
is only valid in the INPUT, FORWARD and PREROUTING chains, and user-
defined chains which are only called from those chains. Note that the
outgoing packets are NOT seen by any packet filtering chains, connec-
tion tracking or NAT, to avoid loops and other problems.
NETMAP
This target allows you to statically map a whole network of addresses
onto another network of addresses. It can only be used from rules in
the nat table.
--to address[/mask]
Network address to map to. The resulting address will be con-
structed in the following way: All ’one’ bits in the mask are
filled in from the new ‘address’. All bits that are zero in the
mask are filled in from the original address.
NFLOG
This target provides logging of matching packets. When this target is
set for a rule, the Linux kernel will pass the packet to the loaded
logging backend to log the packet. This is usually used in combination
with nfnetlink_log as logging backend, which will multicast the packet
through a netlink socket to the specified multicast group. One or more
userspace processes may subscribe to the group to receive the packets.
Like LOG, this is a non-terminating target, i.e. rule traversal contin-
ues at the next rule.
--nflog-group nlgroup
The netlink group (1 - 2^32-1) to which packets are (only appli-
cable for nfnetlink_log). The default value is 0.
--nflog-prefix prefix
A prefix string to include in the log message, up to 64 charac-
ters long, useful for distinguishing messages in the logs.
--nflog-range size
The number of bytes to be copied to userspace (only applicable
for nfnetlink_log). nfnetlink_log instances may specify their
own range, this option overrides it.
--nflog-threshold size
Number of packets to queue inside the kernel before sending them
to userspace (only applicable for nfnetlink_log). Higher values
result in less overhead per packet, but increase delay until the
packets reach userspace. The default value is 1.
NFQUEUE
This target is an extension of the QUEUE target. As opposed to QUEUE,
it allows you to put a packet into any specific queue, identified by
its 16-bit queue number. It can only be used with Kernel versions
2.6.14 or later, since it requires the nfnetlink_queue kernel support.
The queue-balance option was added in Linux 2.6.31, queue-bypass in
2.6.39.
--queue-num value
This specifies the QUEUE number to use. Valid queue numbers are
0 to 65535. The default value is 0.
--queue-balance value:value
This specifies a range of queues to use. Packets are then bal-
anced across the given queues. This is useful for multicore
systems: start multiple instances of the userspace program on
queues x, x+1, .. x+n and use "--queue-balance x:x+n". Packets
belonging to the same connection are put into the same nfqueue.
--queue-bypass
By default, if no userspace program is listening on an NFQUEUE,
then all packets that are to be queued are dropped. When this
option is used, the NFQUEUE rule is silently bypassed instead.
The packet will move on to the next rule.
NOTRACK
This target disables connection tracking for all packets matching that
rule.
It can only be used in the raw table.
RATEEST
The RATEEST target collects statistics, performs rate estimation calcu-
lation and saves the results for later evaluation using the rateest
match.
--rateest-name name
Count matched packets into the pool referred to by name, which
is freely choosable.
--rateest-interval amount{s|ms|us}
Rate measurement interval, in seconds, milliseconds or microsec-
onds.
--rateest-ewmalog value
Rate measurement averaging time constant.
REDIRECT
This target is only valid in the nat table, in the PREROUTING and OUT-
PUT chains, and user-defined chains which are only called from those
chains. It redirects the packet to the machine itself by changing the
destination IP to the primary address of the incoming interface
(locally-generated packets are mapped to the 127.0.0.1 address).
--to-ports port[-port]
This specifies a destination port or range of ports to use:
without this, the destination port is never altered. This is
only valid if the rule also specifies -p tcp or -p udp.
--random
If option --random is used then port mapping will be randomized
(kernel >= 2.6.22).
REJECT
This is used to send back an error packet in response to the matched
packet: otherwise it is equivalent to DROP so it is a terminating TAR-
GET, ending rule traversal. This target is only valid in the INPUT,
FORWARD and OUTPUT chains, and user-defined chains which are only
called from those chains. The following option controls the nature of
the error packet returned:
--reject-with type
The type given can be icmp-net-unreachable, icmp-host-unreach-
able, icmp-port-unreachable, icmp-proto-unreachable,
icmp-net-prohibited, icmp-host-prohibited or icmp-admin-prohib-
ited (*) which return the appropriate ICMP error message
(port-unreachable is the default). The option tcp-reset can be
used on rules which only match the TCP protocol: this causes a
TCP RST packet to be sent back. This is mainly useful for
blocking ident (113/tcp) probes which frequently occur when
sending mail to broken mail hosts (which won’t accept your mail
otherwise).
(*) Using icmp-admin-prohibited with kernels that do not support it
will result in a plain DROP instead of REJECT
SAME
Similar to SNAT/DNAT depending on chain: it takes a range of addresses
(‘--to 1.2.3.4-1.2.3.7’) and gives a client the same source-/destina-
tion-address for each connection.
N.B.: The DNAT target’s --persistent option replaced the SAME target.
--to ipaddr[-ipaddr]
Addresses to map source to. May be specified more than once for
multiple ranges.
--nodst
Don’t use the destination-ip in the calculations when selecting
the new source-ip
--random
Port mapping will be forcibly randomized to avoid attacks based
on port prediction (kernel >= 2.6.21).
SECMARK
This is used to set the security mark value associated with the packet
for use by security subsystems such as SELinux. It is only valid in
the mangle table. The mark is 32 bits wide.
--selctx security_context
SET
This modules adds and/or deletes entries from IP sets which can be
defined by ipset(8).
--add-set setname flag[,flag...]
add the address(es)/port(s) of the packet to the sets
--del-set setname flag[,flag...]
delete the address(es)/port(s) of the packet from the sets
where flags are src and/or dst specifications and there can be
no more than six of them.
Use of -j SET requires that ipset kernel support is provided. As stan-
dard kernels do not ship this currently, the ipset or Xtables-addons
package needs to be installed.
SNAT
This target is only valid in the nat table, in the POSTROUTING chain.
It specifies that the source address of the packet should be modified
(and all future packets in this connection will also be mangled), and
rules should cease being examined. It takes one type of option:
--to-source ipaddr[-ipaddr][:port[-port]]
which can specify a single new source IP address, an inclusive
range of IP addresses, and optionally, a port range (which is
only valid if the rule also specifies -p tcp or -p udp). If no
port range is specified, then source ports below 512 will be
mapped to other ports below 512: those between 512 and 1023
inclusive will be mapped to ports below 1024, and other ports
will be mapped to 1024 or above. Where possible, no port alter-
ation will
In Kernels up to 2.6.10, you can add several --to-source
options. For those kernels, if you specify more than one source
address, either via an address range or multiple --to-source
options, a simple round-robin (one after another in cycle) takes
place between these addresses. Later Kernels (>= 2.6.11-rc1)
don’t have the ability to NAT to multiple ranges anymore.
--random
If option --random is used then port mapping will be randomized
(kernel >= 2.6.21).
--persistent
Gives a client the same source-/destination-address for each
connection. This supersedes the SAME target. Support for
persistent mappings is available from 2.6.29-rc2.
TCPMSS
This target allows to alter the MSS value of TCP SYN packets, to con-
trol the maximum size for that connection (usually limiting it to your
outgoing interface’s MTU minus 40 for IPv4 or 60 for IPv6, respec-
tively). Of course, it can only be used in conjunction with -p tcp.
It is only valid in the mangle table.
This target is used to overcome criminally braindead ISPs or servers
which block "ICMP Fragmentation Needed" or "ICMPv6 Packet Too Big"
packets. The symptoms of this problem are that everything works fine
from your Linux firewall/router, but machines behind it can never
exchange large packets:
1) Web browsers connect, then hang with no data received.
2) Small mail works fine, but large emails hang.
3) ssh works fine, but scp hangs after initial handshaking.
Workaround: activate this option and add a rule to your firewall con-
figuration like:
iptables -t mangle -A FORWARD -p tcp --tcp-flags SYN,RST SYN
-j TCPMSS --clamp-mss-to-pmtu
--set-mss value
Explicitly sets MSS option to specified value. If the MSS of the
packet is already lower than value, it will not be increased
(from Linux 2.6.25 onwards) to avoid more problems with hosts
relying on a proper MSS.
--clamp-mss-to-pmtu
Automatically clamp MSS value to (path_MTU - 40 for IPv4; -60
for IPv6). This may not function as desired where asymmetric
routes with differing path MTU exist — the kernel uses the path
MTU which it would use to send packets from itself to the source
and destination IP addresses. Prior to Linux 2.6.25, only the
path MTU to the destination IP address was considered by this
option; subsequent kernels also consider the path MTU to the
source IP address.
These options are mutually exclusive.
TCPOPTSTRIP
This target will strip TCP options off a TCP packet. (It will actually
replace them by NO-OPs.) As such, you will need to add the -p tcp
parameters.
--strip-options option[,option...]
Strip the given option(s). The options may be specified by TCP
option number or by symbolic name. The list of recognized
options can be obtained by calling iptables with -j TCPOPTSTRIP
-h.
TOS
This module sets the Type of Service field in the IPv4 header (includ-
ing the "precedence" bits) or the Priority field in the IPv6 header.
Note that TOS shares the same bits as DSCP and ECN. The TOS target is
only valid in the mangle table.
--set-tos value[/mask]
Zeroes out the bits given by mask and XORs value into the
TOS/Priority field. If mask is omitted, 0xFF is assumed.
--set-tos symbol
You can specify a symbolic name when using the TOS target for
IPv4. It implies a mask of 0xFF. The list of recognized TOS
names can be obtained by calling iptables with -j TOS -h.
The following mnemonics are available:
--and-tos bits
Binary AND the TOS value with bits. (Mnemonic for --set-tos
0/invbits, where invbits is the binary negation of bits.)
--or-tos bits
Binary OR the TOS value with bits. (Mnemonic for --set-tos
bits/bits.)
--xor-tos bits
Binary XOR the TOS value with bits. (Mnemonic for --set-tos
bits/0.)
TPROXY
This target is only valid in the mangle table, in the PREROUTING chain
and user-defined chains which are only called from this chain. It redi-
rects the packet to a local socket without changing the packet header
in any way. It can also change the mark value which can then be used in
advanced routing rules. It takes three options:
--on-port port
This specifies a destination port to use. It is a required
option, 0 means the new destination port is the same as the
original. This is only valid if the rule also specifies -p tcp
or -p udp.
--on-ip address
This specifies a destination address to use. By default the
address is the IP address of the incoming interface. This is
only valid if the rule also specifies -p tcp or -p udp.
--tproxy-mark value[/mask]
Marks packets with the given value/mask. The fwmark value set
here can be used by advanced routing. (Required for transparent
proxying to work: otherwise these packets will get forwarded,
which is probably not what you want.)
TRACE
This target marks packes so that the kernel will log every rule which
match the packets as those traverse the tables, chains, rules. (The
ipt_LOG or ip6t_LOG module is required for the logging.) The packets
are logged with the string prefix: "TRACE: tablename:chain-
name:type:rulenum " where type can be "rule" for plain rule, "return"
for implicit rule at the end of a user defined chain and "policy" for
the policy of the built in chains.
It can only be used in the raw table.
TTL
This is used to modify the IPv4 TTL header field. The TTL field deter-
mines how many hops (routers) a packet can traverse until it’s time to
live is exceeded.
Setting or incrementing the TTL field can potentially be very danger-
ous, so it should be avoided at any cost.
Don’t ever set or increment the value on packets that leave your local
network! mangle table.
--ttl-set value
Set the TTL value to ‘value’.
--ttl-dec value
Decrement the TTL value ‘value’ times.
--ttl-inc value
Increment the TTL value ‘value’ times.
ULOG
This target provides userspace logging of matching packets. When this
target is set for a rule, the Linux kernel will multicast this packet
through a netlink socket. One or more userspace processes may then sub-
scribe to various multicast groups and receive the packets. Like LOG,
this is a "non-terminating target", i.e. rule traversal continues at
the next rule.
--ulog-nlgroup nlgroup
This specifies the netlink group (1-32) to which the packet is
sent. Default value is 1.
--ulog-prefix prefix
Prefix log messages with the specified prefix; up to 32 charac-
ters long, and useful for distinguishing messages in the logs.
--ulog-cprange size
Number of bytes to be copied to userspace. A value of 0 always
copies the entire packet, regardless of its size. Default is 0.
--ulog-qthreshold size
Number of packet to queue inside kernel. Setting this value to,
e.g. 10 accumulates ten packets inside the kernel and transmits
them as one netlink multipart message to userspace. Default is
1 (for backwards compatibility).
DIAGNOSTICS
Various error messages are printed to standard error. The exit code is
0 for correct functioning. Errors which appear to be caused by invalid
or abused command line parameters cause an exit code of 2, and other
errors cause an exit code of 1.
BUGS
Bugs? What’s this? ;-) Well, you might want to have a look at
http://bugzilla.netfilter.org/
COMPATIBILITY WITH IPCHAINS
This iptables is very similar to ipchains by Rusty Russell. The main
difference is that the chains INPUT and OUTPUT are only traversed for
packets coming into the local host and originating from the local host
respectively. Hence every packet only passes through one of the three
chains (except loopback traffic, which involves both INPUT and OUTPUT
chains); previously a forwarded packet would pass through all three.
The other main difference is that -i refers to the input interface; -o
refers to the output interface, and both are available for packets
entering the FORWARD chain.
The various forms of NAT have been separated out; iptables is a pure
packet filter when using the default ‘filter’ table, with optional
extension modules. This should simplify much of the previous confusion
over the combination of IP masquerading and packet filtering seen pre-
viously. So the following options are handled differently:
-j MASQ
-M -S
-M -L
There are several other changes in iptables.
SEE ALSO
iptables-save(8), iptables-restore(8), ip6tables(8), ip6tables-save(8),
ip6tables-restore(8), libipq(3).
The packet-filtering-HOWTO details iptables usage for packet filtering,
the NAT-HOWTO details NAT, the netfilter-extensions-HOWTO details the
extensions that are not in the standard distribution, and the netfil-
ter-hacking-HOWTO details the netfilter internals.
See http://www.netfilter.org/.
AUTHORS
Rusty Russell originally wrote iptables, in early consultation with
Michael Neuling.
Marc Boucher made Rusty abandon ipnatctl by lobbying for a generic
packet selection framework in iptables, then wrote the mangle table,
the owner match, the mark stuff, and ran around doing cool stuff every-
where.
James Morris wrote the TOS target, and tos match.
Jozsef Kadlecsik wrote the REJECT target.
Harald Welte wrote the ULOG and NFQUEUE target, the new libiptc, as
well as the TTL, DSCP, ECN matches and targets.
The Netfilter Core Team is: Marc Boucher, Martin Josefsson, Yasuyuki
Kozakai, Jozsef Kadlecsik, Patrick McHardy, James Morris, Pablo Neira
Ayuso, Harald Welte and Rusty Russell.
Man page originally written by Herve Eychenne
コロナウイルスの日ごとの感染者数・死者数をグラフ化してみました。どの国が増加傾向にあり、どの国が終息に向かっているかを視覚化しています。
Copyright(C) linux-cmd.com All Rights Reserved. Author Takayuki Yukawa